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Abstract

We present a notion of homotopy pullback in the sesqui-category n-
Cat of strict n-categories, strict n-functors and weak n-transformations;
moreover we show that such a construction satisfies also a 2-dimensional
universal property with respect to n-modifications. This lead us to intro-
duce the new notion of sesqui2-category.

1 Introduction

Amongst the different approaches used in dealing with higher dimensional cate-
gorical structures, the inductive-enriched is probably one of the less developed.
This fact is not surprising at all, as there are indeed very good reasons that lead
the majority to adopt other viewpoints. In fact, such an approach is not really
suitable for making calculations easy, as the inductive process has to be unroll
in order to get explicit. Neither it fits with Internal Category Theory, which
would make it useful in applications. Finally there are other approaches, as the
simplicial one, that can take advantage of an already well developed theory.
Nevertheless it seems that there are also good reasons to take the inductive-
enriched approach.
There are issues indeed that could be more treatable under this perspective: for
instance some of the coherence issues detailed in this paper, as axioms for lax
n-transformations, are dealt with inductively in a natural and simple way.
More deeply, in certain situations the inductive-enriched point of view seems
to be closely related with how and why certain properties and structures are
defined. (see [KMV08a] for an application).

This paper is about homotopy pullbacks for strict-n-categories. We are inter-
ested in such a construction in order to get a notion of h-kernel, and hence
a notion of exactness to be used in developing homotopical (and homological)
algebra for pointed strict n-groupoids1 [KMV08b]. Further developing will in-
volve also the study of homotopy colimits (see [DF04]), in order to establish a
connection with homotopy-theoretical issues.
The idea of our definition recaptures homotopical aspects from the topological
standard h-pullback [Mat76a]. In fact, having in mind the geometric realization
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1See [Gra94] for a detailed account on homotopy theories in a sesquicategorical setting.
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functor for (eventually pointed n-)groupoids, one can tentatively emulate the
constructions involving points, paths, homotopies of paths etc. of a space with
the objects, the arrows and the higher dimensional cells of a n-groupoid. Hence,
let us suppose we are given two maps F : A → B and G : C → B in our favorite
topological category (say Top, Top∗, CW − cplx etc.) their h-pullback is the
space

P = {(a, θ, c) ∈ A× BI × C : F (a) = θ(0), G(c) = θ(1)}
where BI is taken with the compact-open topology and P is topologized as a
subset of A× BI × C.
The corresponding construction for two n-functors F : A→ B and G : C→ B is
the h-pullback P, and has objects the triples (a, t, c) where a and c are objects
of A and C respectively, while t : F (a) → G(c) is a 1-cell of B. Similarly one
can define explicitly the 1-cells of P, namely triples such as

(f : a→ a′, ε : F (f) ◦ t′ ⇒ t ◦G(g), g : c→ c′).

It is clear that, as the dimension of the cells raises up, the complexity of their
description increases. Inductive approach permits to deal with this situation
quite easily, since it is possible to show that the homs of a h-pullback of n-
categories are themselves h-pullbacks of dimension n− 1.

The paper is organized as follows. Next section recalls the inductive definition
of strict n-categories, introduces a notion of lax-n-transformation that gives the
category nCat a structure of a sesqui-category ([Str96, MF08]), finally the stan-
dard h-pullback of n-categories is constructed. The following section is devoted
to developing three-dimensional aspects of nCat, this is done by introducing the
notion of lax-n-modification thus giving nCat a structure of a sesqui2-category;
the end of the section describes a 2-dimensional universal property that defines
of h2-pullbacks in nCat; Theorem 3.13 show that h-pullbacks of n-categories sat-
isfy the 2-dimensional universal property referred above. In other words n-Cat
is a sesqui2-category with h-pullbacks. The last section analyzes the different
environment encountered throughout the paper: the notion of sesqui-category
is recalled while the new notion of sesqui2-category is introduced and charac-
terized.
The present work is based on the PhD Thesis of the author [Met08b], under the
supervision of S. Kasangian and E. M. Vitale.

2 Strict n-categories

In the first part we begin by recalling a standard construction of the category
n-Cat, of (small) strict–n-categories and their morphisms, inductively enriched
over the category (n − 1)-Cat (see for instance [Str87]). Then we give n-Cat
a structure of sesqui-category, in order to take into account the 2-morphisms,
namely lax–n-transformations, and their compositions. Indeed this is the min-
imal setting in which to embed our notion of exact sequence. Nevertheless
in developing the theory we are forced to consider a slightly richer structure
that we have called sesqui2–category, that extends that of sesqui-category by
considering 3-morphism namely lax–n-modifications, together with some kind
of compositions. For the basics on sesqui-categories and sesqui2–categories we
refer to the last section.
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2.1 The category n-Cat

For n = 0, 1 we can safely consider the usual category of small sets and categories
respectively. Hence let us suppose n > 1.
A (strict) n-category C consists of a set of objects C0, and for every pair
c0, c

′
0 ∈ C0, a (n-1)-category C1(c0, c

′
0). Structure is given by morphisms of

(n-1)-categories:

I
u0(c0) // C1(c0, c0) , C1(c0, c

′
0)× C1(c′0, c

′′
0)
◦0
c0,c′0,c′′0 // C1(c0, c

′′
0) ,

called resp. 0-units and 0-compositions, with c0, c
′
0, c
′′
0 any triple of objects C0.

Axioms are the usual for strict unit and strict associativity.
Notation: Cell dimension will be often recalled as subscript, as ck is a k-cell
in the n-category C. Moreover, if

ck : ck−1 → c′k−1 : ck−2 → c′k−2 : · · · → · · · : c1 → c′1 : c0 → c′0,

ck can be considered as an object of the (n− k)-category[
· · ·
[
[C1(c0, c

′
0)]1(c1, c

′
1)
]
1
· · ·
]

1
(ck−1, c

′
k−1).

In order to avoid this quite uncomfortable notation, the latter will be renamed
more simply Ck(ck−1, c

′
k−1), while with Ck we will mean the disjoint union of all

such. Finally, 0-subscript of the underlying set of an n-category, will be often
omitted.
A morphism of n-categories is a (strict) n-functor F : C → D. It consists of
set-theoretical map F0 : C0 → D0 together with morphisms of (n-1)-categories

F
c0,c
′
0

1 : C1(c0, c
′
0) // D1(F0c0, F0c

′
0)

for any pair of objects c0, c
′
0 of C0, such that usual (strict) functoriality axioms

are satisfied. Let us notice that subscripts and superscripts will be often omitted,
when this does not cause confusion.
Routine calculations shows that these data organizes in a category, with finite
products and terminal object defined in the obvious way [Met08b].

2.2 The sesqui–categorical structure of n-Cat

The category Set can be easily endowed with a trivial sesqui–categorical struc-
ture. For n = 1, the category Cat is a 2-category, with natural transformations
as 2-cells. Hence it has an underlying sesqui-category.
Again we can suppose n > 1. For given n-functors F,G : C → D, a lax n-
transformation α : F → G consists of a pair (α0, α1) where the first is a map

α0 : C0 → D1 such that α0(c0) = αc0 : Fc0 → Gc0, and α1 = {αc0,c
′
0

1 }c0,c′0∈C0
is
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a collection of 2-morphisms of (n-1)-categories

C1(c0, c
′
0)

F
c0,c′0
1

yy

G
c0,c′0
1

%%
D1(F0c0, F0c

′
0)

−◦0α0c
′
0 %%

D1(G0c0, G0c
′
0)

α0c0◦0−yy
D1(F0c0, G0c

′
0)

α
c0,c′0
1ks

(1)

satisfying axioms below:
• (functoriality w.r.t. composition) for every triple of objects c0, c

′
0, c
′′
0 of C0,

C1(c0, c
′
0) × C1(c′0, c

′′
0 )

id×F
c′0,c′′0
1

tt
id×G

c′0,c′′0
1

��

F
c0,c′0
1 ×id

��

G
c0,c′0
1 ×id

**

≡

C1(c0, c
′
0) × D1(F0c

′
0, F0c

′′
0 )

id×(−◦α0c
′′
0 )

��

D1(G0c0, G0c
′
0) × C1(c′0, c

′′
0 )

(α0c0◦−)×id

��

C1(c0, c
′
0) × D1(G0c

′
0, G0c

′′
0 )

id×(α0c
′
0◦−)ww

D1(F0c0, F0c
′
0) × C1(c′0, c

′′
0 )

(−◦α0c
′
0)×id ''

C1(c0, c
′
0) × D1(F0c

′
0, G0c

′′
0 )

F
c0,c′0
1 ×id

��

D1(F0c0, G0c
′
0) × C1(c′0, c

′′
0 )

id×G
c′0,c′′0
1

��
D1(F0c0, F0c

′
0) × D1(F0c

′
0, G0c

′′
0 )

◦0 ++

D1(F0c0, G0c
′
0) × D1(G0c

′
0, G0c

′′
0 )

◦0tt
D1(F0c0, G0c

′′
0 )

id×α
c′0,c′′0
1

ck α
c0,c′0
1 ×id

s{

(2)

=

C1(c0, c
′
0) × C1(c′0, c

′′
0 )

◦0

��
C1(c0, c

′′
0 )

F
c0,c′′0
1

xx

G
c0,c′′0
1

&&
D1(F0c0, F0c

′′
0 )

−◦α0c
′′
0 &&

D1(G0c0, G0c
′′
0 )

α0c0◦−xx
D1(F0c0, G0c

′′
0 )

α
c0,c′′0
1ks

• (functoriality w.r.t. units) for every object c0 of
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C0,
I

u0(c0)

��
C1(c0, c0)

F
c0,c0
1

zz

G
c0,c0
1

$$
D1(F0c0, F0c0)

−◦α0c0 $$

D1(G0c0, G0c0)

α0c0◦−zz
D1(F0c0, G0c0)

α
c0,c0
1ks

=

I

[α0c0]

		

[α0c0]

��
D1(F0c0, G0c0)

idks
(3)

In the sequel we will refer to diagrams like (1) as to naturality diagrams for the
2-morphism α. A n-transformation is called strict when all α−,−1 are identities.

nCat: the hom-categories

In this section we describe, hom-categories n-Cat(C,D), once n-categories C
and D are fixed.
Given the diagram:

C

G

AAF //

E

��
D

α
��

ω
��

;

one defines a (vertical, or 1-)composition ω •1 α : E +3 G in the following way:

• for every object c0 in C,

[ω •1 α]0(c0) = ω0c0 ◦0 α0c0 : Ec0 // Gc0

• for every pair of objects c0, c
′
0 in C, the diagram below describes

[ω •1 α]
c0,c
′
0

1 =
(
ωc0 ◦ α

c0,c
′
0

1

)
•1
(
ω
c0,c
′
0

1 ◦ αc′0
)

C1(c0, c
′
0)

E1

tt
F1

��

G1

**
D1(Ec0, Ec

′
0)

−◦ωc′0

��

D1(Gc0, Gc
′
0)

αc0◦−

��

D1(Fc0, F c
′
0)

ωc0◦−tt −◦αc′0
**

D1(Ec0, F c
′
0)

−◦αc′0
++

≡ D1(Fc0, Gc
′
0)

ωc0◦−tt
D1(Ec0, Gc

′
0)

α
c0,c′0
1

lt
ω

c0,c′0
1

jr

To prove that these data give indeed a 2-morphism, unit functoriality (3) and
composition functoriality (2) equations must hold To this end, chose an object
c0 of C, then

u(c0)((αc0,c01 (ωc0◦−))•1(ωc0,c01 (−◦αc0))) (i)

= idαc0
(ωc0◦−)•1idωc0

(−◦αc0) (ii)

= id[ωα]c0
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where (i) follows for units functoriality of ω and α, while (ii) from functoriality
of constant functors. This proves unit functoriality.
Concerning composition functoriality, take three objects c0, c′0 and c′′0 in C, and
consider the following diagram:

[c0,c
′
0]×[c′0,c

′′
0 ]

[c0,c
′
0]×[Ec′0,Ec

′′
0 ]

[c0,c
′
0]×[Fc′0,Fc

′′
0 ] [Fc0,Fc

′
0]×[c′0,c

′′
0 ]

[Gc0,Gc
′
0]×[c′0,c

′′
0 ]

[c0,c
′
0]×[Ec′0,Fc

′′
0 ]

[c0,c
′
0]×[Fc′0,Gc

′′
0 ]

[Ec0,Fc
′
0]×[Fc′0,Gc

′′
0 ]

[Ec0,Fc
′
0]×[c′0,c

′′
0 ]

[Fc0,Gc
′
0]×[c′0,c

′′
0 ]

[c0,c
′
0]×[Ec′0,Gc

′′
0 ]

[Ec0,Ec
′
0]×[Ec′0,Gc

′′
0 ]

[Ec0,Gc
′′
0 ]

[Ec0,Gc
′
0]×[Gc′0,Gc

′′
0 ]

[Ec0,Gc
′
0]×[c′0,c

′′
0 ]

[c0,c
′
0]×[Gc′0,Gc

′′
0 ][Ec0,Ec

′
0]×[c′0,c

′′
0 ]

id×E1

vv id×F1

��
id×G1

��

E1×id

��

F1×id

��

G1×id

((

id×(−◦ωc′′0 )

		

id×(ωc′0◦−)

|| id×(−◦αc′′0 )

��

id×(αc′0◦−)

��

(−◦ωc′0)×id

��

(ωc0◦−)×id

��

(−◦αc′0)×id

""

(αc0◦−)×id

��

id×(−◦αc′′0
)

��
id×(ωc′0

◦−)

��

(E1(−)◦ωc′0)×id

))

id×(αc′0◦G1(−))

uu (−◦αc′0)×id
��

(ωc0◦−)×id

		

E1×id ##

◦
,,

◦

��
id×G1{{

◦
rr

id×ωc′0,c′′0
1

[c

id×αc′0,c′′0
1

]e ω
c0,c′0
1 ×id

y�

id×ωc′0,c′′0
1

{�

After applying the product interchange (see section 4.2) to 2-morphisms ω
c0,c
′
0

1

and α
c′0,c
′′
0

1 , by functoriality of 2-morphisms in (n − 1)-Cat the two sides of

the diagram give [◦c0,c′0,c′′0 ](α
c0,c
′′
0

1 (ωc0 ◦ −) •1 ωc0,c−0′′

1 (− ◦ αc′′0 )) that is exactly

[ω •1 α]
c0,c
′′
0

1 , and this concludes the proof.

Given a morphism of n-categories F : C F // D , it is possible to define the unit

2-cell of F , This is denoted idF , with [idF ]0(c0) = idFc0 and [idF ]
c0,c
′
0

1 = id
F

c0,c′0
1

It is straightforward to see that these give a 2-morphism, and prove the folloving

Proposition 2.1. Let us fix n-categories C and D. Morphisms between them
and 2-morphisms between those form a category, with composition and units
given above.

nCat: the sesqui-categorical structure

In the next sections we will introduce reduced left/right compositions of mor-
phisms and 2-morphisms of n-categories, in order to show that nCat has a canon-
ical sesqui-categorical structure. Notice that 0Cat=Set has a trivial sesqui-
categorical structure (all 2-cells are identities), while 1Cat=Cat has a canonical
2-categorical structure, that inherits a sesqui-categorical structure, forgetting
horizontal composition of 2-cells. Hence we may well suppose n > 1.
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Given the situation

B N // C

F

!!

G

==Dα

��

one defines reduced horizontal composition N •0 α : NF ⇒ NG : B → D (or
0-composition) in the following way:

• for every object b0 in B,

[N •0 α]0 = α0(N(b0)) : F (N(b0))→ G(N(b0))

• for every pair of objects b0, b
′
0 of B, the diagram below describes [N •0 α]

b0,b
′
0

1

by means of reduced left composition in (n− 1)Cat:

[N •0 α]
b0,b
′
0

1 = N
b0,b
′
0

1 •0 αNb0,Nb
′
0

1

B1(b0, b
′
0)

N1

��
[NF ]1

��

[NG]1

��

C1(Nb0, Nb
′
0)

F1

xx

G1

&&
D1(NF (b0), NF (b′0))

−◦αNb′0 &&

D1(NG(b0), NG(b′0))

αNb0
◦−xx

D1(NF (b0), NG(b′0))

α
Nb0,Nb′0
1ks

To prove that these data give indeed a 2-morphism, one shows that unit and
composition axioms (3) (2) (see [Met08b]).
Moreover, given the situation

A M // B N // C

F

!!
G //

H

==D
α��
β��

in nCat, left-composition defined above satisfies axioms (L1) to (L4) of Propo-
sition 4.2.

(L1)
IdC •0 α = α

Proof. Let objects c0, c
′
0 of C be given. It is clear that

[IdC •0 α]c0 (def)

= αIdC(c0) = αc0

7



and also that

[IdC •0 α]
c0,c
′
0

1
(def)

= [IdC]
c0,c
′
0

1 •0 αc0,c
′
0

1
(1)

= IdC1(c0,c′0) •0 α
c0,c
′
0

1
(2)

= α
c0,c
′
0

1

where (1) comes from the definition of identity functors, and (2) is axiom (L1)
for (n− 1)-Cat.

(L2)
MN •0 α = M •0 (N •0 α)

Proof. Let objects a0, a
′
0 of A be given. Then

[MN •0 α]a0 (def)

= αMN(a0) = αN(Ma0)
(def)

= [N •0 α]Ma0
(def)

= [M •0 (N •0 α)]a0

Furthermore,

[MN •0 α]
a0,a

′
0

1
(def)

= [MN ]
a0,a

′
0

1 •0 αMN(a0),MN(a′0)
1

= M
a0,a

′
0

1 N
Ma0,Ma′0
1 •0 αMN(a0),MN(a′0)

1

(1)

= M
a0,a

′
0

1 •0 (N
Ma0,Ma′0
1 •0 αN(Ma0),N(Ma′0)

1 )

(def)

= M
a0,a

′
0

1 •0 [N •0 α]
Ma0,Ma′0
1

(def)

= [M •0 (N •0 α)]
a0,a

′
0

1

where (1) is axiom (L2) for (n− 1)-Cat.

(L3)
N •0 idF = idNF

Proof. Let objects b0, b
′
0 of B be given. Trivially,

[N •0 idF ]b0 (def)

= [idF ]Nb0 = [idNF ]b0

and

[N •0 idF ]
b0,b
′
0

1
(def)

= N
b0,b
′
0

1 •0 [idF ]
Nb0,Nb

′
0

1
(1)

= N
b0,b
′
0

1 •0 id
F

Nb0,Nb′0
1

=

(2)

= id
N

b0,b′0
1 F

Nb0,Nb′0
1

= id
[NF ]

b0,b′0
1

(def)

= [idNF ]
b0,b
′
0

1

where (1) comes from the definition of identity transformation and (2) is axiom
(L3) in (n− 1)-Cat.

(L4)
N •0 (α •1 β) = (N •0 α) •1 (N •0 β)

Proof. Let objects b0, b
′
0 of B be given. On objects:

[N•0(α•1β)]b0 (def)

= [α•1β]Nb0 = αNb0◦βNb0 (def)

= [N•0α]b0◦[N•0β]b0 = [(N•0α)•1(N•0β)]b0

On homs:
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[N •0 (α •1 β)]
b0,b
′
0

1
(def)

= N
b0,b
′
0

1 •0 [α •1 β]
Nb0,Nb

′
0

1

(1)

= N
b0,b
′
0

1 •0
((
β
Nb0,Nb

′
0

1 •0 (αNb0 ◦ −)
)
•1
(
α
Nb0,Nb

′
0

1 •0 (− ◦ βNb0,Nb
′
0

1 )
))

(2)

=
(
N
b0,b
′
0

1 •0 βNb0,Nb
′
0

1 •0 (αNb0 ◦ −)
)
•1
(
N
b0,b
′
0

1 •0 αNb0,Nb
′
0

1 •0 (− ◦ βNb0,Nb
′
0

1 )
)

(def)

=
(
[N •0 β]

b0,b
′
0

1 •0 ([N ◦ α]b0 ◦ −)
)
•1
(
[N •0 α]

b0,b
′
0

1 •0 (− ◦ [N •0 β]b′0)
)

(3)

= [(N •0 α) •1 (N •0 β)]
b0,b
′
0

1

where (1) and (3) hold by definition of vertical composites of 2-morphisms, (2)
by axiom (L4) in (n− 1)-Cat.

Given the situation

C

F

!!

G

==D
L // Eα

��

one defines reduced horizontal composition α •0 L : FL ⇒ GL : C → E (or
0-composition) in the following way:

• for every object c0 in C,

[α •0 L]0 = L(α0(c0)) : L(F (c0))→ L(G(c0))

• for every pair of objects c0, c
′
0 of B, the diagram below describes [α •0 L]

c0,c
′
0

1

by means of reduced right composition in (n− 1)-Cat:

[α •0 L]
c0,c
′
0

1 = α
c0,c
′
0

1 •0 LFc0,Gc
′
0

1

C1(c0, c
′
0)

F1

zz

G1

$$
D1(F (c0), F (c′0))

−◦αc′0
$$

L1

zz

D1(G(b0), G(b′0))

αc0
◦−

zz

L1

$$
E1(FL(c0), FL(c′0))

−◦L(αc′0
) **

D1(F (c0), G(c′0))

L1

��

E1(GL(c0), GL(c′0))

L(αc0
)◦−tt

α
c0,c′0
1ks

E1(FL(c0), GL(c′0))

Again one must show that these data give indeed a 2-morphism, i.e. that unit
and composition axioms (3) (2) hold, and that right-composition defined above
satisfies axioms (R1) to (R4) of Proposition 4.2. In fact the proofs are quite
similar to those of left-composition, and can be found in [Met08b].
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Finally, in the situation

B N // C

F

!!

G

==D
L // Eα

��

a whiskering operation may be defined if the following equation holds:
(LR5)

(N ◦ α) ◦ L = N ◦ (α ◦ L)

Proof. Let objects b0, b
′
0 of B be given. Then the following follows immediately

from definitions

[(N •0 α) •0 L]b0 = L([N •0 α]b0) = L(αNb0) = [α •0 L]Nb0 = [N ◦ (α ◦ L)]b0

Analogously, consider:

[(N •0 α) •0 L]
b0,b
′
0

1 = [N •0 α]
b0,b
′
0

1 •0 LF (Nb0),G(Nb′0)
1

=
(
N
b0,b
′
0

1 •0 αNb0,Nb
′
0

1

)
•0 LF (Nb0),G(Nb′0)

1

(1)

= N
b0,b
′
0

1 •0
(
α
Nb0,Nb

′
0

1 •0 LF (Nb0),G(Nb′0)
1

)
= N

b0,b
′
0

1 •0 [α •0 L]
Nb0,Nb

′
0

1

= [N •0 (α •0 L)]
b0,b
′
0

1

where everything comes directly from definitions, but (1) that is exactly the
whiskering in (n− 1)-Cat.

Products in nCat: 2-universality of categorical products

In order to close the induction on the definition of nCat, all we need is to show
that it admits finite products, according to the 2-dimensional Universal Property
4.7, i.e. to show it admits binary products and terminal objects. Here we give
just an idea of the proof.
Let two n-categories C and D be given. We know from the discussion above
that the underlying category bn−Catc admits a (standard) product of C and D:

C× D
ΠC

||

ΠD

""
C D

Now suppose we are given two 2-morphisms

α : A⇒ A′ : X→ C× D, β : B ⇒ B′ : X→ C× D

According to Universal Property 4.7, what we want to prove is that there exists
a unique 2-morphism θ : T ⇒ T ′ : X→ C× D such that

θ •0 ΠC = α, θ •0 ΠD = β, (4)

10



In fact T and T ′ are determined by the 1-dimensional universal property: T

is such that (and univocally determined by)

{
T •0 ΠC = A
T •0 ΠD = B

, T ′ is such that

(and univocally determined by)

{
T ′ •0 ΠC = A′

T ′ •0 ΠD = B′
.

The 2-morphism θ = 〈θ0, θ1〉 is given by letting θ0(x0) = (α0(x0), β0(x0)) and

θ
x0,x

′
0

1 = 〈αx0,x
′
0

1 , β
x0,x

′
0

1 〉.
Let us observe that in order to guarantee the compatibility of the definition
w.r.t. domains and co-domains, and in order to show that the pair 〈θ0, θ1〉 is
indeed a 2-morphism of n-categories, the 2-universal property of products in
(n− 1)-Cat must be used.

3 The sesqui2–categorical structure of n-Cat

3.1 Lax n-modification

So far we have shown that n-categories organizes naturally into a sesqui-category.
This gives a setting to deal not only with n-categories and n-functors, but also
with their 2-morphisms, namely lax-n-transformations.
Yet the necessity of dealing with 3-morphisms (lax-n-modifications) is the reason
why we have introduced the new concept of sesqui2-category, as detailed in
Appendix 4.3. In fact, most of the theory relies on the 2-dimensional setting
provided by the sequi-categorical structure developed in the previous sections.
Nevertheless a notion of 3-morphism will be the main tool in giving the pullback
construction in n-Cat a good behaviour with respect to its sesqui-categorical
structure. Hence the rest of the section is devoted to give a proof of the following

Theorem 3.1. The sesqui-category nCat, endowed with 3-morphism, their com-
positions, whiskering and dimension raising 0-composition of 2-morphisms is a
sesqui2-category.

This is done by means of the characterization given in Theorem 4.14.
As usual the approach is genuinely inductive, starting with the well known
definition of a modification in Cat [Bor94].
Hence suppose given an integer n > 1.
A lax n-modification Λ : α *4 β : F +3 G : C // D

C

F

%%

G

99 Dα
��

β
��

Λ *4

is a pair 〈Λ0,Λ1〉, where

• Λ0 : C0
//

∐
c0∈C0

[D2(α0(c0), β0(c0))]0 is a map such that, for every c0 in

C0, Λ0(c0) : α0(c0) +3 β0(c0) .

11



• (n-naturality) for every pair of objects c0, c′0 of C, a 3-morphism of (n− 1)categories
that fills the following diagram:

C1(c0, c
′
0)

F
c0,c′0
1

zz

G
c0,c′0
1

$$
D1(Fc0, F c

′
0) −◦αc′0

��
−◦βc′0 ,,

D1(Gc0, Gc
′
0)αc0◦−

}}
βc0◦−ppD1(Fc0, Gc

′
0)

−◦Λc′0�
 Λc0◦−��

α
c0,c′0
1ks

β
c0,c′0
1

ks
Λ

c0,c′0
1

JT

i.e.

G
c0,c
′
0

1 •0 (− ◦ αc′0)
α

c0,c′0
1 +3

id•0(Λc0◦−) ��

F
c0,c
′
0

1 •0 (− ◦ αc′0)

id•0(−◦Λc0)��

G
c0,c
′
0

1 •0 (βc0 ◦ −)

Λ
c0,c′0
1

/:

β
c0,c′0
1

+3 F
c0,c
′
0

1 •0 (− ◦ βc′0)

These data must obey to functoriality axioms described by the following equa-
tions in (n-1)-Cat:
• (functoriality w.r.t. 0-composition) for every triple c0, c

′
0, c
′′
0 of objects of C

(Λ
c0,c
′
0

1 ◦Gc
′
0,c
′′
0

1 ) •2 (F
c0,c
′
0

1 ◦ Λ
c′0,c
′′
0

1 ) = (− ◦c0,c
′
0,c
′′
0 −) •0 Λ

c0,c
′′
0

1

where the 2-dimensional intersection is the 2-morphism F (−) ◦ Λc′0 ◦G(−).

• (functoriality w.r.t. units) for every object c0 of C

u(c0) •0 Λc0,c01 = Id[Λc0]

We write [Λc0] for the constant 2-morphism given by Λc0.
Notice that both functoriality axioms for 3-morphisms reduce to those for 2-
morphisms, when we consider only identity 3-morphisms (i.e. 2-morphisms
considered as 3-morphisms).
In the same way functoriality axioms for 2-morphisms reduce to those for 1-
morphisms, when we consider only identity 3-morphisms (i.e. 2-morphisms
considered as 3-morphisms).

3.2 n-Cat(C,D): the underlying category

Here and in the following three small sections we consider n-categories C and D
be given. We consider a sesqui-category structure over the category n-Cat(C,D).
As we did in defining the sesqui-category nCat, we start by showing the under-
lying category structure. This has been already detailed in section 2.2, hence it
suffices to recall that:

• objects of bn-Cat(C,D)c are n-functors C→ D;

• arrows of bn-Cat(C,D)c n-lax transformation between them.

Composition is 2-morphisms 1-composition, obvious units.

12



3.3 n-Cat(C,D): the hom-categories

Let us fix n-functors F,G : C→ D. We have to define categories
(
n-Cat(C,D)

)
(F,G),

or more simply n-Cat(F,G).

• Objects of n-Cat(F,G) are 2-morphisms α : F ⇒ G;

• Arrows α→ β are 3-morphisms of n-categories.

Composition

For 3-morphisms Λ = (Λ0,Λ
−,−
1 ) : α → β and Σ = (Σ0,Σ

−,−
1 ) : β → γ their

2-composition Λ •2 Σ : α→ γ is given by the following data:

• (on objects)
[Λ •2 Σ]0 : c0 7→ Λc0 ◦1 Σc0

• (on homs) For chosen objects c0, c
′
0 one has

[Λ•2 Σ]
c0,c
′
0

1 =
((
G
c0,c
′
0

1 •0 (Λc0 ◦−)
)
•1 Σ

c0,c
′
0

1

)
•2
(

Λ
c0,c
′
0

1 •1
(
F
c0,c
′
0

1 •0 (−◦Σc′0)
))

We can represent this also as a 2-dimensional pasting, sometimes useful in
proofs:

G
c0,c
′
0

1 •0 (αc0 ◦ −)
id•0(Λc0◦−) +3

α
c0,c′0
1 ��

G
c0,c
′
0

1 •0 (βc0 ◦ −)
id•0(Σc0◦−) +3

β
c0,c′0
1��

Λ
c0,c′0
1

o{

G
c0,c
′
0

1 •0 (γc0 ◦ −)

γ
c0,c′0
1��

Σ
c0,c′0
1

o{

F
c0,c
′
0

1 •0 (− ◦ αc′0)
id•0(−◦Λc′0)

+3 F
c0,c
′
0

1 •0 (− ◦ βc′0)
id•0(−◦Σc′0)

+3 F
c0,c
′
0

1 •0 (− ◦ γc′0)

These data form indeed a 3-morphism, as the clever reader can personally check
by 2-dimensional diagram chasing: in fact only 2-morphisms and 3-morphisms
enter into the proof, that uses product interchange rules in dimension n− 1.

Units

For any 2-morphism β : F ⇒ G : C→ D its identity 3-morphisms idβ is given
by:

• (on objects)
[idβ ]0 : c0 7→ idβc0

• (on homs) For chosen objects c0, c
′
0 one has

[idβ ]−,−1 = idβ−,−
1

It is immediate to check that above pair is indeed a 3-morphisms.
Similarly associativity and neutral units follows from same properties for 2-cells.
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3.4 n-Cat(C,D): the sesqui-categorical structure

In the this section we will show that hom-categories n−Cat(C,D) underly
a structure of sesqui-categories, with 2-cells provided by 3-morphisms of n-
categories. To this end we define reduced left/right 1-composition of a 3-
morphism with a 2-morphism, according to the following reference diagram.

C

E

++

F

''

G

ww

H

ssD

ω +3

α +3

β
+3

σ +3Λ

�

Reduced left- and right-composition

The 3-morphism ω •1 Λ : ω •1 α *4 ω •1 β is defined for c0, c′0 in C by

[ω •1 Λ]0(c0) = ωc0 ◦0 Λc0

[ω •1 Λ]
c0,c
′
0

1 =
(

Λ
c0,c
′
0

1 •0 (ωc0 ◦ −)
)
•1
(
ω
c0,c
′
0

1 •0 (− ◦ βc′0)
)

= (ωc0 ◦ Λ
c0,c
′
0

1 ) •1 (ω
c0,c
′
0

1 ◦ βc′0)

The pair 〈[ω •1 Λ]0, [ω •1 Λ]−,−1 〉 forms indeed a 3-morphism of n-categories. In
fact it satisfies composition and unit axioms, as one can prove by induction with
a consistent use of the characterization of sesqui2-categories given in Theorem

4.14. Similarly, the 3-morphism Λ •1 σ : α •1 σ *4 β •1 σ is defined for c0, c′0
in C by

[Λ •1 σ]0(c0) = Λc0 ◦0 σc0
[Λ •1 σ]

c0,c
′
0

1 =
(
σ
c0,c
′
0

1 •0 (αc0 ◦ −)
)
•1
(

Λ
c0,c
′
0

1 •0 (− ◦ σc′0)
)

= (αc0 ◦ σ
c0,c
′
0

1 ) •1 (Λ
c0,c
′
0

1 ◦ σc′0)

The pair 〈[Λ•1 σ]0, [Λ•1 σ]−,−1 〉 forms indeed a 3-morphism of n-categories. The
proof is a straightforward variation of the proof for reduced right-composition
above.
Next Proposition gives some properties of left/right 1-composition of a 3-morphism
with a 2-morphism (for a proof, the reader is addressed to [Met08b]). They are
modeled on similar properties given in the definition of a sesqui-category, and
they are extremely useful in dealing with calculations.

Proposition 3.2. (2-composition (i.e. vertical) composition of 3-morphisms
w.r.t. (reduced) 1-composition with a 2-morphism) In the situation described by
the diagram below, the following equations hold:

E′
ω′ +3 E

ω +3 F

α

��
β +3

γ

@HG
σ +3 H

σ′ +3 H ′
Λ
�

Σ
�
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(L1)′ idF •1L Λ = Λ (R1)′ Λ •1R idG = Λ
(L2)′ (ω′ •1 ω) •1L Λ = ω′ •1L (ω •1L Λ) (R2)′ Λ •1R (σ •1 σ′) = (Λ •1R σ) •1R σ′
(L3)′ ω •1L idα = idωα (R3)′ idα •1R σ = idασ
(L4)′ ω •1L (Λ •2 Σ) = (ω •1L Λ) •2 (ω •1L Σ) (R4)′ (Λ •2 Σ) •1R σ = (Λ •1R σ) •2 (Σ •1R σ)

(LR5)′ (ω •1L Λ) •1R σ = ω •1L (Λ •1R σ)

3.5 0-whiskering of 3-morphisms

In this section we define reduced left/right 1-composition of a 3-morphism with
a 1-morphism, according to the following reference diagram.

B E // C

F

&&

G

88 D
H // Eα

��
β

��

Λ *4

Reduced left and right-composition

The 3-morphism E •0 Λ : E •0 α *4 E •0 β is defined for b0, b′0 in B by

[E •0 Λ]0(b0) = Λ(Eb0)

[E •0 Λ]
b0,b
′
0

1 = E
b0,b
′
0

1 (−) •0 Λ
Eb0,Eb

′
0

1

The pair 〈[E •0 α]0, [E •0 α]−,−1 〉 forms indeed a 3-morphism of n-categories (see
[Met08b]).

Similarly the 3-morphism Λ •0 H : α•0 *4 β •0 H is defined for c0, c′0 in C by

[Λ •0 H]0(c0) = H(Λc0)

[Λ •0 H]
c0,c
′
0

1 = Λ
c0,c
′
0

1 •0 HFc0,Gc
′
0

1

The pair 〈[Λ•0H]0, [Λ•0H]−,−1 〉 forms indeed a 3-morphism of n-categories (see
[Met08b]).
As we did in describing the sesqui-categorical structure for homs in nCat, we
use again a left-and-right approach to describe properties of the 0-whiskering of
of a 3-morphism with a morphism. This is done in the next statement, a proof
can be found in [Met08b].

Proposition 3.3 (2-composition (i.e. vertical) composition of 3-morphisms
w.r.t. (reduced) 0-composition with a (1-)morphism). In the situation described
by the diagram below, the following equations hold:

A E′ // B E // C

F

&&

G

88 D
H // E H′ // Fα

�� β��
γ
��

Λ *4 Σ *4

(L1)′′ idC •0L Λ = Λ (R1)′′ Λ •0R idD = Λ
(L2)′′ (E′ •0L E) •0L Λ = E′ •0L (E •0L Λ) (R2)′′ Λ •0R (H •0R H ′) = (Λ •0R H) •0R H ′
(L3)′′ E •0L idα = idE•0

L
α (R3)′′ idα •0R H = idα•0

R
H

(L4)′′ E •0L (Λ •2 Σ) = (E •0L Λ) •2 (E •0L Σ) (R4)′′ (Λ •2 Σ) •0R H = (Λ •0R H) •2 (Σ •0R H)
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(LR5)′′ (E •0L Λ) •0R H = E •0L (Λ •0R H)

Before switching to next section, let us give a last property that express at once
functoriality of left and right 0-composition with a morphism. To this end, let
us be given also 2-morphisms ω : M ⇒ F and σ : G ⇒ N , as represented in
the diagram below

B
E��

C

M

,,

F

**

G

tt

N

rrD

ω +3

α +3

β
+3

σ +3Λ
�

H��
E

Left/right 0-composition of a 3-morphism with a morphism satisfies also the
following property that relates 0-whiskering w.r.t. 1-whiskering:

Proposition 3.4 (Whiskering interchange property).

(LRW ) E•0L
(
ω•1LΛ•1Rσ

)
•0RH = (E•0Lω•0RH)•1L(E•0LΛ•0RH)•1R(E•0Lσ•0RH)

3.6 Dimension raising 0-composition of 2-morphisms

Let two 0-intersecting 2-morphisms of n-categories be given.

C

F
  

G

AAα
��

D

H
��

K

AAβ
��

E

It is easy to verify that in general

α \ β := (F •0 β) •1 (α •0 K) 6= (α •0 H) •1 (G •1 β) =: α/β

C

F
!!
D

H

  

K

??β
��

E

C

F
!!

G

??α
��

D

K

??E

6=

C

F
  

G

AAα
��

D

H
��
E

C

G

AAD

H
��

K

AAβ
��

E

(5)

Indeed they give the data for a 3-morphism

α ∗ β : α \ β *4 α/β

16



In fact, for every object c0 of C one defines

[α ∗ β]0 : c0 7→

H(Fc0)
βFc0

yy
Hαc0

%%
K(Fc0)

β1(αc0) +3

Kαc0 %%

H(Gc0)

βGc0yy
K(Gc0)

Moreover for every pair of objects c0, c
′
0 of C one defines

[α ∗ β]
c0,c
′
0

1 = α
c0,c
′
0

1 ∗ βFc0,Gc
′
0

1

A detailed proof that the pair 〈[α ∗ β]0, [α ∗ β]−,−1 〉 satisfies the axioms for a
3-morphism can be found in [Met08b]. It is quite long and involves some 3-
dimensional diagram-chasing and sesqui2–categorical properties. Here we will

be content to persuade the reader that domain and codomain of [α ∗ β]
c0,c
′
0

1 are
well defined.
First we write the diagram that represents the 3-morphism of (n-1)categories

[α ∗ β]
c0,c
′
0

1 : α
c0,c
′
0

1 \ βFc0,Gc
′
0

1
*4 α
c0,c
′
0

1 /β
Fc0,Gc

′
0

1

i.e. the composition

[c0, c
′
0]

F1

uu
G1

))
[Fc0, F c

′
0]

−◦αc′0
))

[Gc0, Gc
′
0]

αc0◦−uu

α
c0,c′0
1ks

[Fc0, Gc
′
0]

H1

uu
K1

))
[H(Fc0), H(Gc′0)]

−◦βGc′0
))

[K(Fc0),K(Gc′0)]

βFc0◦−uu

β
Fc0,Gc′0
1ks

[H(Fc0),K(Gc′0)]

Its domain is computed below

[c0, c
′
0]

[FH]1

tt
[GH]1
��

αc0◦G1(−)

**
[H(Fc0), H(Fc′0)]

−◦Hαc′0
��

[H(Gc0), H(Gc′0)]
[αH]

c0,c′0
1ks

Hαc0◦−tt

[Fc0, Gc
′
0]

H1

tt
H1

��
[H(Fc0), H(Gc′0)]

−◦βGc′0 **

[H(Fc0), H(Gc′0)]

−◦βGc′0
��

[K(Fc0),K(Gc′0)]
β
Fc0,Gc′0
1ks

βFc0◦−tt
[H(Fc0),K(Gc′0)]

Now, by functoriality w.r.t 0-composition, with constant left composite one has

(αc0 ◦−) •0 βFc0,Gc
′
0

1 =
(
K
Gc0,Gc

′
0

1 •0 (β1(αc0) ◦−)
)
•1
(
β
Gc0,Gc

′
0

1 •0 (Hαc0 ◦−)
)

17



and by definition of ∗-composition on objects,

=
(
K
Gc0,Gc

′
0

1 •0 ([α ∗ β]c0 ◦ −)
)
•1
(
β
Gc0,Gc

′
0

1 •0 (Hαc0 ◦ −)
)

Hence we can redraw the domain

[c0, c
′
0]

[FH]1

tt
[GH]1
��

[GK]1

**
[H(Fc0), H(Fc′0)]

−◦Hαc′0
��

[H(Gc0), H(Gc′0)]
[αH]

c0,c′0
1ks

−◦βGc′0
��Hαc0◦−tt

[K(Gc0),K(Gc′0)]
[Gβ]

c0,c′0
1ks

βGc0◦−
tt

Kαc0◦−
��

[H(Fc0), H(Gc′0)]

−◦βGc′0 **

[H(Gc0),K(Gc′0)]

−◦βGc′0
��

[K(Fc0),K(Gc′0)]
[α∗β]c0◦−ks

βFc0◦−tt
[H(Fc0),K(Gc′0)]

And this completes the domain-part. Concerning the codomain, the calculation
is similar and it is left to the reader.

Remark 3.5. We have adopted the ∗-symbol instead of the more obvious •0 in
order to emphasize the dimension-raising property of this composition. Never-
theless ∗-properties w.r.t. other •0-compositions are somehow better understood
thinking only in terms of •0.

The following statements give some properties of dimension raising composition
of 2-morphisms. The proofs inductively relies on the similar properties in lower
dimension, and can be found in [Met08b].

Proposition 3.6. Given the case

C

F
!!

G

??α
��

D

H

  

K

??β
��

E

If α is a lax natural n-transformation and β is a strict natural n-transformation,
the composition α ∗ β is an identity.
In this case it is possible to deal with dimension preserving 0-composition of
2-morphisms, by letting

α∗̃β = dom(α ∗ β) = cod(α ∗ β)

Importance of Proposition above is in that it allows to right-0-compose freely
with constant transformations, such as −◦ c2 or c2 ◦− for a 2-cell c2 : c1 ⇒ c′1 :
c0 → c′0.Notice that it does not hold for α strict and β lax, since in this case
the result is a strict 3-morphism.

Let be given the situation

B E // C

F
!!

G

??α
��

D

H

  

K

??β
��

E L // F

one has the following
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Proposition 3.7 (∗-associativity 1).

(L ∗A) (E •0L α) ∗ β = E •0L (α ∗ β) (R ∗A) α ∗ (β •0R L) = (α ∗ β) •0R L

Proposition 3.8 (∗-identity).

(L) idE ∗ α = idE•0Lα (R) α ∗ idH = idα•0RH

In the situation

C

F
!!

G

??α
��

D M // D′
H

!!

K

??β
��

E

one has the following

Proposition 3.9 (∗-associativity 2).

α ∗ (M •0L β) = (α •0RM) ∗ β

In the situation below

B

D
!!

E

??ω
��

C

F

��
G //

H

DD
α��
β��

D

K

  

L

??γ

��
E

one has the following

Proposition 3.10 (∗-functoriality).

(a) (α •1 β) ∗ γ =
(

(α ∗ γ) •1 (β •0 L)
)
•2
(

(α •0 K) •1 (β ∗ γ)
)

(b) ω ∗ (α •1 β) =
(

(ω ∗ α) •1 (E •0 β)
)
•2
(

(D •0 α) •1 (ω ∗ β)
)

3.7 h-Pullbacks revisited: h2-pullbacks in n-Cat

We introduce here a notion of 2-dimensional h-pullback in the sesqui2-category
n-Cat. Indeed the notion of h2-pullback can be formulated in any sesqui2-
category, and it is easy to show that h2-pullbacks satisfy trivially the 1-dimensional
universal property (see Proposition 3.12), hence they are also h-pullbacks. For
instance, our construction of the standard h-pullback of n-categories is an in-
stance of such a 2-dimensional one.
In order to fix notation, let us consider two n-functors F : A→ B andG : C→ B.
A h2-pullback of F and G is a four-tuple (P, P,Q, ε)

P
Q //

P
��

C

G
��

A
F
// B

ε
;C

that satisfies the following 2-dimensional universal property:
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Universal Property 3.11 (h2-pullbacks). For any other two four-tuple

(X,M,N, ω)

X N //

M
��

C

G
��

A
F
// B

ω
;C and

(X, M̂ , N̂ , ω̂)

X N̂ //

M̂
��

C

G
��

A
F
// B

ω̂
;C

2−morphism α, β

XM

��
M̂oo

α

��

N

��
N̂ //

β�	
A C

and

3−morphism Σ

M •0 F α•0F +3

ω

��

M̂ •0 F

ω̂
��

N •0 G

Σ
1=

β•0G
+3 N̂ •0 G

there exists a unique λ : L⇒ L̂ : X→ P such that (UP)

1. λ •0 P = α, 2. λ •0 Q = β, 3. λ ∗ ε = Σ.

As an immediate consequence of the definition, we state the following

Proposition 3.12. 2-Universal Property of h2-pullbacks implies 1-dimensional
one. Hence h2-pullbacks are defined up to isomorphism.

Proof. Just put α, β and Σ identities.

Let us notice that Proposition 3.12 holds in every sesqui2-category. More inter-
estingly in n-Cat a kind of converse to this proposition also holds.

Theorem 3.13. The sesqui2-category n-Cat admits h2-pullbacks. In fact given
two n-functors F : A → B, G : C → B, their standard h-pullback (P, P,Q, ε)
satisfies also Universal property 3.11.

Proof. Firstly we remark that 1-dimensional Universal Property 4.10 of h-pullbacks
applied to the four-tuple (X,M,N, ω) yields an L : X → P, while applied to
(X, M̂ , N̂ , ω̂), a L̂ : X → P. Those have to be domain and co-domain of the
2-cell provided by the universal property, namely λ : L⇒ L̂.
We recall the constructions in order to fix notation.
For x0, x

′
0 objects of X, L0 is defined by L0(x0) = (Mx0, ωx0

, Nx0), while

L
x0,x

′
0

1 is given by the universal property in dimension n − 1, i.e. it is the

unique morphism X1(x0, x
′
0)→ P1(L(x0), L(x′0)) such that L

x0,x
′
0

1 •0PLx0,Lx
′
0

1 =

M
x0,x

′
0

1 , L
x0,x

′
0

1 •0 QLx0,Lx
′
0

1 = N
x0,x

′
0

1 , L
x0,x

′
0

1 •0 εLx0,Lx
′
0

1 = ω
x0,x

′
0

1 The pair L =

(L0, L
−,−
1 ) is a 1-morphism. Similarly one determines L̂ = (L̂0, L̂

−,−
1 ).

Now we show that remaining data (namely, α, β and Σ) of the hypothesis
provide a 2-morphism λ : L ⇒ L̂ that satisfies required property. In fact the
object-part is defined directly

λx0
= (αx0

,Σx0
, βx0

) : Lx0 → L̂x0,
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while λx0,x−0′

1

X1(x0, x
′
0)

L
x0,x′0
1

xx
L̂

x0,x′0
1

&&
P1(Lx0, Lx

′
0)

−◦λx′0
&&

P1(L̂x0, L̂x
′
0)

λx0◦−xx

λ
x0,x′0
1ks

P1(Lx0, L̂x
′
0)

is given by the 2-universal property for (n-1)categories. In fact the 0-codomain

of λ
x0,x

′
0

1 , namely P1(Lx0, L̂x
′
0) is defined inductively as a h2-pullback in (n-1)-

Cat:

P1(Lx0, L̂x
′
0)

Q
Lx0,L̂x′0
1 //

P
Lx0,L̂x′0
1

��

C1(Nx0, N̂x
′
0)

G
Nx0,N̂x′0
1��

ε
Lx0,L̂x′0
1

ow B1(G(Nx0), G(N̂x′0))

ωx0◦−��
A1(Mx0, M̂x′0)

F
Mx0,M̂x′0
1

// B1(F (Mx0), F (M̂x′0))
−◦ω̂x′0

// B1(F (Mx0), G(N̂x′0))

Over the same base are also defined

X1(x0, x
′
0)

N
x0,x′0
1 ◦βx′0 //

M
x0,x′0
1 ◦αx′0

��

C1(Nx0, N̂x
′
0)

G
Nx0,N̂x′0
1��

θ = (ω
x0,x′0
1 ◦G(βx′0))•1([MF ]

x0,x′0
1 ◦Σx′0)

ow
B1(G(Nx0), G(N̂x′0))

ωx0◦−��
A1(Mx0, M̂x′0)

F
Mx0,M̂x′0
1

// B1(F (Mx0), F (M̂x′0))
−◦ω̂x′0

// B1(F (Mx0), G(N̂x′0))

and

X1(x0, x
′
0)

βx0◦N̂
x0,x′0
1 //

αx0◦M̂
x0,x′0
1

��

C1(Nx0, N̂x
′
0)

G
Nx0,N̂x′0
1��

θ̂ = (Σx0◦[N̂G]
x0,x′0
1 )•1(F (αx0)◦ω̂x0,x′0

1 )
ow

B1(G(Nx0), G(N̂x′0))

ωx0◦−��
A1(Mx0, M̂x′0)

F
Mx0,M̂x′0
1

// B1(F (Mx0), F (M̂x′0))
−◦ω̂x′0

// B1(F (Mx0), G(N̂x′0))

Moreover we can consider 2-morphisms:

α
x0,x

′
0

1 : αx0 ◦ M̂
x0,x

′
0

1 ⇒M
x0,x

′
0

1 ◦ αx′0 : X1(x0, x
′
0)→ A1(Mx0, M̂x′0)

β
x0,x

′
0

1 : βx0 ◦ N̂
x0,x

′
0

1 ⇒ N
x0,x

′
0

1 ◦ βx′0 : X1(x0, x
′
0)→ A1(Mx0, M̂x′0)

and the 3-morphism
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(βx0 ◦ N̂
x0,x

′
0

1 ) •0 (ωx0 ◦G
Nx0,N̂x

′
0

1 )
β
x0,x′0
1 •0id +3

θ̂
��

(N
x0,x

′
0

1 ◦ βx′0) •0 (ωx0 ◦G
Nx0,N̂x

′
0

1 )

θ
��

Σ
x0,x′0
1nx

(αx0 ◦ M̂
x0,x

′
0

1 ) •0 (F
Mx0,M̂x′0
1 ◦ ω̂x′0)

β
x0,x′0
1 •0id

+3 (M
x0,x

′
0

1 ◦ αx′0) •0 (F
Mx0,M̂x′0
1 ◦ ω̂x′0)

Finally we can apply the universal property, in order to get a unique 2-morphism

λ
x0,x

′
0

1 : L
x0,x

′
0

1 ◦ λx′0 ⇒ λx0 ◦ L̂
x0,x

′
0

1

such that λ
x0,x

′
0

1 •0 QLx0,L̂x
′
0

1 = β
x0,x

′
0

1 , λ
x0,x

′
0

1 •0 PLx0,L̂x
′
0

1 = α
x0,x

′
0

1 and λ
x0,x

′
0

1 ∗
ε
Lx0,L̂x

′
0

1 = Σ
x0,x

′
0

1 The proof that the pair λ = < λ0, λ
−,−
1 > is a 2-morphism

of n-categories is quite technical. The interested reader will find it in [Met08b],
Lemma 6.4.
Moreover it satisfies by construction Universal Property 3.11. Finally

[λ ∗ ε]x0
= ε(λx0

) = ε
(
(αx0

,Σx0
, βx0

)
)

= Σx0

and

[λ ∗ ε]x0,x
′
0

1 = λ
x0,x

′
0

1 ∗ εLx0,L̂x
′
0

1 = Σ
x0,x

′
0

1

To conclude the proof we still need to prove uniqueness. But this will easily
be achieved. Indeed the object part of 2-morphism λ satisfying the universal
property is univocally determined by the fact that P0, Q0 and ε0 are projection,
and once that is determined, uniqueness in dimension n−1 guaranties the homs
part.

4 Higher dimensional structures

4.1 Sesqui-categories, their morphisms and 2-morphisms

The notion of sesqui-category is due to Ross Street [Str96]. More recent devel-
oping can be found in [MF08]. The term sesqui comes from the latin semis-que,
that means (one and) a half. Hence a sesqui-category is something in-between
a category and a 2-category. More precisely

Definition 4.1. A (small) sesqui-category C is a (small) category bCc with a
lifting of the hom-functor to Cat, such that the following diagram of categories
and functors commutes, obj being the functor that forgets the morphisms:

Cat

obj

��
bCcop × bCc

C(−,−)

88

bCc(−,−)
// Set

(6)

Objects and morphisms of bCc are also objects and 1-cells of C, while morphisms
of C(A,B)’s (with A and B running in obj(bCc)) are the 2-cells of C.

22



We first observe that the definition above induces a 2-graph structure on C,
whose underlying graph underlies the category C. Besides, the functor C(−,−)
provides hom-sets of the category bCc with a category structure, whose com-
position is termed vertical composition (or 1-composition) of 2-cells. Finally,
condition expressed by diagram (6) on the lifting C(−,−) gives a reduced hor-
izontal composition, or whiskering (or 0-composition), compatible with 1-cell

composition and with the 2-graph structure of C. In fact, for A′
a // A and

B
b // B′ in bCc, the functor

C(a, b) : C(A,B) // C(A′, B′)

gives explicitly such a composition: for a 2-cell α : f +3 g : A // B , it whiskers
the diagram

A′
a // A

f

!!

g

@@B
b // B′α

��

to get the 2-cell

A′

a•f•b

''

a•g•b

77 B
′

a•α•b
��

where a•α•b is just a concise form for C(a, b)(α). By functoriality of whiskering,
the operation may also be given in a left-and-right fashion. In fact it suffices to
identify

a •L α = a • α • 1B , α •R b = 1A • α • b
This fact can be made precise, and gives a more tractable definition, by the
following characterization (see, for example [Gra94, Ste94]):

Proposition 4.2. Let C be a reflexive 2-graph C2
s //
t
// C1eoo

s //
t
// C0eoo whose

underlying graph bCc = C1
s //
t
// C0eoo has a category structure. Then C is a

sesqui-category precisely when the following conditions hold:

1. for every pair of objects A,B of C0, the graph C(A,B) has a category
structure, called the hom-category of A,B.

2. (partial) reduced horizontal compositions are defined, i.e. for every A′, A,B
and B′ objects of C0, composition in bCc extends to binary operations

•L : : bCc(A′, A)× C(A,B) // C(A′, B) (7)

•R : C(A,B)× bCc(B,B′) // C(A,B′) , (8)

that satisfy equations below, whenever the composites are defined:

A′′
a′ // A′

a // A

f

!!

g

@@B
b // B′

b′ // A′′α
��
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(L1) 1A •L α = α (R1) α •R 1B = α
(L2) a′a •L α = a′ •L (a •L α) (R2) α •R bb′ = (α •R b) •R b′
(L3) a •L 1f = 1af (R3) 1f •R b = 1fb
(L4) a •L (α · β) = (a •L α) · (a •L β) (R4) (α · β) •R b = (α •R b) · (β •R b)

(LR5) (a •L α) •R b = a •L (α •R b)

In these equations, 1A and 1B are identity 1-cells, while 1f , 1af and 1fb are
identity 2-cells, and · is the (vertical) composition inside the hom-categories.
Axiom (LR5) will be also called whiskering axiom.

Morphisms between sesqui-categories are termed sesqui-functors. More precisely
a sesqui-functor F : C // D is a 2-graph morphism such that

• bFc : bCc // bDc is a functor,

• for every A,B in C0,

FA,B : C(A,B) // D(F(A),F(B))

are functors component of a natural transformation F

bCcop × bCc
C(−,−)

&&
bFcop×bFc

��

Cat

bDcop × bDc
D(−,−)

88F

�


(9)

that lifts bFc : bCc(−,−) +3 (bFcop × bFc)· bDc(−,−).

Remark 4.3. Notice that every functor between categories gives rise to such
a natural transformation as bFc for bFc. From this point of view, the last
condition may be re-formulated saying that a sesqui-functor is the lifting of a
functor between the underlying categories.

We can translate the definition of sesqui-functor in terms of left/right composi-
tions, according to the next easy to prove

Proposition 4.4. Let C and D be sesqui-categories, and let F : C // D
be a 2-graphs homomorphism, whose underlying graph homomorphism bFc is
a functor. Then F is a sesqui-functor precisely when the following conditions
hold:

1. for every pair of objects A,B of C0, the graph homomorphism

FA,B : C(A,B) // D(F(A),F(B))

is a functor, called the hom-functor at A,B.
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2. (partial) horizontal reduced compositions are preserved, i.e. for every dia-
gram

A′
a // A

f

!!

g

@@B
b // B′α

��

in C0, equations below hold:

(L6) F(a •L α) = F(a) •L C(α) (R6) F(α •R b) = F(α) •R F(b)

Definition 4.5 (strict sesqui-transformations). Let two parallel sesqui-functors

F ,G : C → D

be given, and let be given a 2-graph transformation ∆ : F ⇒ G whose underlying
1-transformation

b∆c : bFc ⇒ bGc

is a natural transformation of functors. Then ∆ is a (strict) natural transfor-
mation of sesqui-functors when, for every α : f ⇒ g : A→ B in C,

F(α) •R ∆B = ∆A •L G(α)

F(A)
∆A //

F(f)

��

F(g)

��

G(A)

G(f)

��

G(g)

��
F(B)

∆B

// G(B)

F(α)+3 G(α)+3

Notice that while vertical composition of (strict) natural transformation of
sesqui-functors can be easily defined, the same is not true for horizontal com-
position. Therefore the category SesquiCAT of sesqui-categories, regardless of
size issues, is indeed a sesqui-category itself.

The notion of (strict) natural transformation of sesqui-functors is essentially of
a categorical nature. Namely the “functor”

b−c : SesquiCAT→ CAT

is also a “sesqui-functor”, when we consider the 2-category CAT as a sesqui-
category.
Therefore those are just usual natural transformations that behave nice with
respect to reduced left and right compositions. For the same reason the notions
of adjunction and equivalence of sesqui-categories (w.r.t. strict transformations)
are straightforward generalization of their categorical analogues.

Generalizing sesqui-categories (Chapter 3) we will need a further notion of
sesqui-transformation, whose definition follows
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Definition 4.6 (lax sesqui-transformations). Let two parallel sesqui-functors

F ,G : C → D

be given, and let be given a 2-graph transformation Γ : F ⇒ G. Then a lax
natural transformation Γ : G ⇒ G is given by the following data:
• For every object A of C, an arrow

ΓA : F(A)→ G(A)

• ( naturality w.r.t. 1-cells) For every arrow f : A→ B of C, a 2-cell

Γf : ΓA • G(f)⇒ F(f) • ΓB

F(A)
ΓA //

F(f)

��

G(A)

G(f)

��

Γf

rz

F(B)
ΓB

// G(B)

• (naturality w.r.t. 2-cells) For every 2-cell α : f ⇒ g : A→ B in C, an equation

ΓA • G(f)
ΓA•LG(α) +3

Γf

��

ΓA • G(g)

Γg

��
F(f) • ΓB F(α)•R

+3 F(g) • ΓB

These data have to satisfy usual functoriality axioms, i.e. for every object A of C
Γ1A

= 1ΓA
, and for each pair of composeable arrows f, h, (Γf•G(h))(F(f)•Γg) =

Γfh

Let us notice that, in general, a lax sesqui-transformation is not a natural trans-
formation of the functors underlying domain and co-domain sesqui-functors.

4.2 Finite products and h-pullbacks in a sesqui-category

In the sesqui-categorical context we will refer to binary products according to
the following 2-dimensional universal property

Definition 4.7. Let C be a sesqui-category, A and B two objects of C. A product
of A and B is a triple (A×B, πA : A×B → A, πB : A×B → B) satisfying the
following universal property:

for every object Q of C and 2-cells α : a +3 a′ : Q // A , β : b +3 b′ : Q // B ,

there exists a unique 2-cell γ : q +3 q′ : Q // A×B with γ • πA = α and

γ • πB = β (write γ = 〈α, β〉).
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The situation may be visualized on the diagram below

Q

�� �� �� �� ����
A A×B

πA

oo
πB

// B

α
�&

γ
+3

β

y�

It is easy to show that such a product satisfies also the universal property
defining categorical products.

Definition 4.8. Let C be a sesqui-category. A terminal object is an object I of
C satisfying the following universal property:
for every other object X of C, there exists a unique 2-cell ξ : x⇒ x′ : X → I.

Products and terminals defined this way are determined up to isomorphism.
Furthermore finite products and canonical isomorphisms are defined as in the
categorical case.
Now we consider the 2-cells α : f ⇒ g : A → B and β : h ⇒ k : C → D in a
sesqui-category C. A 2-cell

α× β : f × h⇒ g × k : A× C → B ×D

is uniquely determined by the universal property: α× β = 〈πA • α, πC • β〉.
Notice that this induces a kind of commutative horizontal composition of 2-cells,
provided they are on different product-components.
In fact, we need the following

Lemma 4.9. For α and β as above,

((1A×β)• (f×1D)) · ((1A×k)• (α×1D)) = ((1A×h)• (α×1D)) · ((1A×β)• (g×1D))

Refer to [Met08b] for a proof.

A× C

1A×k
''

1A×h

��

1A×k

��
A×D

g×1D
))

f×1D

��

A×D

f×1D

��
B ×D

α×1D

z�

1A×β

z�

A× C

1A×k

��

1A×h

��
A×D

g×1D

��

f×1D

��
B ×D

α×1Dks

1A×βks A× C

1A×k

��
1A×h

ww

1A×h

��
A×D

g×1D

��

A×D

g×1D

��
f×1D

ww
B ×D

α×1D\d

1A×β\d
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A× C
1A×k

�� 1A×hyy

f×1C

��g×1C %%
A×D

g×1D

��

B × C

1B×h

��
B ×D

α×1C

z�
1A×β\d

11





mm

��
QQ

--

MM

qq

A× C

1A×k %%

1A×h

��f×1Cyy

g×1C

��
B × C

1B×k

��

A×D

f×1D

��
B ×D

α×1C\d 1A×β

z�

A× C

f×1C
ww

g×1C

��

f×1C

��
B × C

1B×k

��

B × C

1B×k



 1B×h
uu

B ×D

α×1C\d

1B×β\d

A× C

g×1C

��

f×1C

��
B × C

1B×k

��

1B×h

��
B ×D

α×1Cks

1B×βks

A× C

g×1C
''

f×1C

��

g×1C

��
B × C

1B×k
))

1B×h

��

B × C

1B×h

��
B ×D

α×1C

z�

1B×β

z�

Lemma 4.9 allows us to define a horizontal composition of this kind of 2-cells

(1A × β) • (α× 1D) = α× β = (α× 1C) • (1B × β)

and to prove diagram equalities, such as the one above. These kind of diagram-
matic equations will be called product interchange rules.

We introduce here a notion of standard h-pullback suitable for our purposes.
This notion has been formalized by Michael Mather in [Mat76b], for generic
categories of spaces, with (eventually pointed) topological spaces in mind. It
has been further generalized to h-categories2 by Marco Grandis in [Gra94]. We
(ab)use the term h-pullback, instead of that of comma-square because our first
aim is to develop a theory in the context of n-groupoids, [KMV08b] or at least in
the contest of n-categories with respect to equivalence n-transformations, where
the two notions coincide.

Definition 4.10. Consider two arrows f : A → B g : C → B in a sesqui-
category C. An h-pullback of f and g is a four-tuple (P (f, g), p, q, ε)

P
q //

p

��

C

g

��
A

f
// B

ε
;C

2A h-category is a weaker notion than that of a sesqui-category, see [Gra94].
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such that for any other four-tuple (X,m, n, λmf ⇒ ng) there exists a unique
` : X → P satisfying `p = m, `q = n, ` •L ε = λ.

In [Met08b] one can find a proof that Definition above defines pullbacks up to
isomorphisms, and that of the following

Lemma 4.11 (Pullback of h-projections.). In the sesqui-category C, let be given
the diagram below, where the left-hand square is commutative and the right-hand
square ε is a h-pullback

R
s //

r

��

P
q //

p

��

D

g

��
A

e
// B

f
//

ε

:B

C

then the composition s •L ε is a h-pullback if, and only if, the left hand square
is a pullback.

4.3 Sesqui2-categories

The necessity of introducing 3-morphisms (lax-n-modifications) takes us out
of the comfortable setting of sesqui-categories, into the unknown territory of
sesqui-categorically enriched structures.
Following this suggestion, we have named the new setting sesqui2-category. This
notion is closely related with that of Tas (Tas, pl. Teisi, are mathematical
objects introduced by the pioneering work of S. Crans, see [Cra00, Cra01])
and incorporates a horizontal dimension raising horizontal composition of 2-
morphisms. A special example of sesqui2-category is given by the well-known
notion of Gray-category [Gra76, Gra74]. There, horizontal composition of 2-
morphisms is always an identity 3-morphism, therefore homs are indeed very
special sesqui-categories, i.e. 2-categories, and those identiy 3-morphisms imply
interchange law for horizontal compositions.
Now, Gray-categories are indeed enriched in 2-Cat, hence, in order to fully jus-
tify the name sesqui2-category , it would be interesting to investigate explicitly
the enrichment that generates this notion from that of sesqui-category [Met08a].
We leave this issue to further investigations.
What we present here is a treatable inductive approach, comprehensive of a
useful characterization given in Theorem 4.14.

Definition 4.12. A (small) sesqui2-category C consists of:

• A 3-truncated reflexive globular set C•:

C3
d2 //

c2
// C2e2oo

d1 //

c1
// C1e1oo

d0 //

c0
// C0e0oo

with operations

•m : Cp cm×dm Cq → Cp+q−m−1, m < min(p, q)

such that the following axioms hold:
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(i) For every pair C,D ∈ C0, the localization C(C,D) is a sesqui-category, with

- object are F,G, etc. ∈ C1(C,D)
- for any pair of objects F,G, 1-cells are α, β, etc. ∈ C2(F,G)
- for any pair of 1-cells α, γ : F → G, 2-cells are Λ,Σ, etc. ∈ C3(α, β)

k-compositions are restrictions of •k+1-compositions:

- 0-composition of 1-cells of C(C,D)

�0 := •1 : C2 c1×d1 C2 → C2

- left/right reduced 0-compositions of 1-cell with a 2-cell of C(C,D)

�0L := •1 : C2 c1×d1 C3 → C3

�0R := •1 : C3 c1×d1 C2 → C3
- 1-compositions of 2-cells of C(C,D)

�1 := •2 : C3 c2×d2 C3 → C3

(ii) For every morphism F : C→ D and objects B,E of C

− •0 F : C(B,C)→ C(B,D)

F •0 − : C(D,E)→ C(C,E)

are sesqui-functors.
(iii) For every object C and objects B,D of C, if we denote idC = e0(C),

− •0 idC : C(B,C)→ C(B,C)

idC •0 − : C(C,D)→ C(C,D)

are identity sesqui-functors.
(iv) (naturality axioms) For every pair of 0-composable 2-morphisms α : F ⇒
G : C→ D and β : H ⇒ K : D→ E

(a) α •0 β : (F •0 β) •1 (α •0 K)→ (α •0 H) •1 (G •0 β)

For every 2-morphisms ε : L ⇒ M : B → C and β : H ⇒ K : D → E, and for
every 3-morphism Λ : α *4 ω : F ⇒ G : C→ D

(b) (α •0 β) •2
(

(Λ •0 H) •1 (G •0 β)
)

=
(

(F •0 β) •1 (Λ •0 K)
)
•2 (ω •0 β)

(c)
(

(L •0 Λ) •1 (ε •0 G)
)
•2 (ε •0 ω) = (ε •0 α) •2

(
(ε •0 F ) •1 (M •0 Λ)

)
(v) (functoriality axioms) For every 2-morphisms ω : D ⇒ E : B → C and
γ : H ⇒ L : D → E and every pair of 1-composable 2-morphisms α : F ⇒ G :
C→ D and β : G⇒ H : C→ D

(a) (α •1 β) •0 γ =
(

(α •0 γ) •1 (β •0 L)
)
•2
(

(α •0 K) •1 (β •0 γ)
)
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(b) ω •0 (α •1 β) =
(

(ω •0 α) •1 (E •0 β)
)
•2
(

(D •0 α) •1 (ω •0 β)
)

(vi) (associativity axiom) For every 0-composable triple x ∈ [C(B,C)]p, y ∈
[C(C,D)]q and z ∈ [C(D,E)]r, with p+ q + r ≤ 2

(x •0 y) •0 z = x •0 (y •0 z)

(vii) (identity axioms) For morphisms E : B → C and H : D → E, and 2-
morphism α : F ⇒ G : C→ D,

idF •0 α = idF•0α, α •0 idG = idα•0G

Remark 4.13. 1. Axiom (iv)(c) is better understood when visualized as in the
following diagram (same notation)

F •0 H

ω•0H

��
α•0H +3

Λ•0H
JT

F•0β
��

G •0 H

G•0β
��

F •0 K

α•0β 0<

α•0K
+3 G •0 K

=

F •0 H ω•0H +3

F•0β
��

G •0 H

G•0β
��

F •0 K

ω•0β 0<

ω•0K +3

α•0K

AIG •0 K

Λ•0K
JT

The same can be claimed for axiom (iv)(b).

2. Axiom (v)(a) is better understood when visualized as in the following diagram
(same notation)

F •0 K
(α•1β)•0K +3

F•0γ
��

H •0 K

H•0γ
��

F •0 L
(α•1β)•0L

+3

(α•1β)•0γ 0;

H •0 L

=

F •0 K α•0K +3

F•0γ
��

G •0 K
β•0K +3

G•0γ
��

H •0 K

H•0γ
��

F •0 L
α•0L

+3

α•0γ 3A

G •0 L
β•0L

+3

β•0γ 3A

H •0 L

The same can be claimed for axiom (v)(b).

Theorem 4.14. Let C• be a 3-truncated reflexive globular set. Then the follow-
ing two statements are equivalent.

1. C is a (small) sesqui2-category

2. Axioms (i), (ii) and (iii) of Definition 4.12 hold, moreover

(viii) The 2-truncation C2
d1 //

c1
// C1e1oo

d0 //

c0
// C0e0oo of C• is a sesqui-category.

(ix) For every 2-morphism α : F ⇒ G : C→ D and objects B,E of C

− •0 α : − •0 F ⇒ − •0 G : C(B,C)→ C(B,D)

α •0 − : F •0 − ⇒ G •0 − : C(D,E)→ C(C,E)
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are lax natural transformations of sesqui-functors.

(x) For every morphism F : C→ D of C

− •0 idF − •0F ⇒ − •0 F

idF •0 − : F •0 − ⇒ F •0 −

are identical natural transformations.

(xi) (reduced associativity axiom)

For every 0-composable triple x ∈ [C(B,C)]p, y ∈ [C(C,D)]q and z ∈ [C(D,E)]r,
with p+ q + r = 2

(x •0 y) •0 z = x •0 (y •0 z)

i.e. for 3-morphism Λ, 2-morphisms α, β and morphisms F,G of C, the following
equations hold, when composites exist:

(Λ •0 F ) •0 G = Λ •0 (F •0 G) (α •0 β) •0 F = α •0 (β •0 F )
(F •0 Λ) •0 F = F •0 (Λ •0 G) (α •0 F ) •0 β = α •0 (F •0 β)
(Λ •0 F ) •0 G = Λ •0 (F •0 G) (F •0 α) •0 β = F •0 (α •0 β)

Proof. First we prove that 1. implies 2..
Condition (viii) is equivalent to satisfying properties (L1) to (L4), (R1) to (R4)
and (LR5) of Proposition 4.2. Now, (L1) and (R1) hold by (iii), (L2) and (R2)
by (iv), (L3), (R3), (L4) and (R4) by (ii), (LR5) by (vi).
Condition (ix) holds. In fact let us recall Definition 4.6. Assignment on objects
(=1-cells) is given by 0-composition, naturality by (iv) and functoriality by (v)
(compositions) and (vii) (units).
Condition (x) holds too. In fact this is implied by (ix) above and (vii).
Finally (xi) is a subset of (vi).

Conversely we prove that 2. implies 1..
Conditions (iv) and (v) hold by (ix).
Condition (vi) holds by (xi) for the cases p+ q + r = 2. What is still to prove
is the case p+ q + r = 0 and the case p+ q + r = 1, that are given by (viii).
Finally (vii) is a consequence of (ix) and (x).

Remark 4.15. Notice that the characterization given by Theorem 4.14 is some-
how redundant. Nevertheless its usefulness is that it makes available practical
rules in order to deal with calculations in a sesqui2-categorical environment.
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