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Intro

We are concerned with the study of the algebraic properties of
categories internal to a semi-abelian category E (leading example
E = Gp, the category of groups).

C1 ×C0 C1
m !! C1

c !!

d
!! C0e""

Since E Mal’cev, Cat(E) = Gpd(E).

Fact. A category in Gp is the same as a group in Cat, i.e. a strict
2-group.

The weak version of this, categorical groups, arose in algebraic
geometry (gr-categories). They have been extensively studied and
notions such as that of commutativity, of exact sequences,
factorization system, etc. have been introduced and studied.
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Weak morphisms

Is it possible to develop a similar theory in an intrinsic setting?

To answer this question, it is important to decide how the objects
organize in a 2-category.

For the 2-category of 2-groups (strict categorical groups) there are
(at least) two meaningful notions of morphisms:

◮ internal functors

◮ monoidal functors
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Weak morphisms

Internal functors... (⇔ Strict monoidal functors)

H1
F1 !!

d
##

c
##

G1

d
##

c
##

H0

$$

F0

!! G0

$$

i.e. (F1,F0) are group homomorphisms,
compatible with the categorical structure of H and G.
The corresponding 2-category is denoted 2Gpstr.
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Weak morphisms

Monoidal functors...

H1
F1 !!❴❴❴

d
##

c
##

G1

d
##

c
##

H0

$$

F0

!!❴❴❴ G0

$$

i.e. (F1,F0) are functions in Set,
compatible with the categorical structure of H and G, and with
the group operations only up to isomorphisms.
The corresponding 2-category is denoted 2Gp.
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Weak morphisms

Many important properties of 2-groups cannot be observed with
only the strict monoidal functors available.
Need an internal notion of (weak) monoidal functor.

Theorem (Vitale 2010) The embedding 2Gpstr → 2Gp is the
bicategory of fractions of 2Gpstr, w.r.t. the class of internal weak
equivalences.

The analogous result holds for 2Lie = Gpd(Lie)
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Weak morphisms

Theorem (Mantovani, M., Vitale 2011) Let E be Barr-exact.
The bicategory of fractions of Gpd(E) w.r.t. (internal) weak
equivalences can be described by fractors, i.e. profunctors

H ✤E !! G

whose canonical span representation has the left leg a surjective
weak equivalence.

Fractors organize in a bicategory Fract(E).
Fractors give a notion of weak morphism of internal groupoids in
E , equivalent to that of monoidal functors when E = Gp.
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Crossed modules in E - I

For making computations easier with 2-groups and strict monoidal
functors, one can use crossed modules of groups.

This notion has been internalized in the semi-abelian context by
G. Janelidze, so that internal crossed modules can be used for
computing with internal groupoids and internal functors.

Giuseppe Metere Braided and symmetric internal groupoids



Intro
Internal crossed modules
Braiding and Symmetry

Crossed modules in E - II

An internal crossed module G in a semi-abelian category E
[J 2003], with “Smith = Huq” can be described [MF VdL 2010] as
a pair

G0!G
ξ !! G

∂ !! G0

making the diagrams commute:

G !G

∂#1 ##

χ
G !! G

1##
G0!G

1#∂ ##

ξ !! G

∂##
G0!G0 χ

G0

!! G0

A (strict) morphism of crossed modules H !! G is a pair of

equivariant morphisms F : H !! G , F0 : H0
!! G0 .
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Crossed modules in E - III

Theorem. (Janelidze 2010) There is an equivalence of categories

Xmod(E) ≃ Gpd(E)

Exercise. The equivalence above underlies a bi-equivalence of

2-categories
Xmod(E) ≃ Gpd(E)
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Crossed modules in E - IV

We can extend the biequivalence:

Xmod(E) ≃ Gpd(E)
↓ ↓

?Butt(E) ≃ Fract(E)

As fractors model weak morphisms of groupoids, there is a notion
of weak morphism of crossed modules, that corresponds to fractors
under the (bi)equivalence: butterflies.
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Internal butterflies - I

Butterflies were introduced by B. Noohi in [Noo05] for the
category of groups. Here we recall their internal definition
[AMMV11]. A butterfly E : H ✤ !! G :

H
κ

%%❄
❄❄

❄❄
❄

∂

##

G

∂

##

ι

&&⑧⑧
⑧⑧
⑧⑧

E

σ&&⑧⑧
⑧⑧
⑧⑧

ρ %%❄
❄❄

❄❄
❄

H0 G0

E !H
σ#1 !!

1#κ ##

H0!H
ξ !! H

κ##
E !E χE

!! E

E !G
ρ#1 !!

1#ι ##

G0!G
ξ !! G

ι##
E !E χE

!! E

i. (κ, ρ) is a complex

ii. (ι,σ) is an extension

iii. iv. the two diagrams on the right commute
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Internal Butterflies - II

Fact: butterflies correspond to fractors.

H × G
πH

''✉✉✉
✉✉
✉✉

κ*ι

##

πG

((■
■■

■■
■■

H
κ

((❏
❏❏

❏❏
❏❏

∂

##

G

∂

##

ι

''✉✉
✉✉
✉✉
✉

E

σ''✉✉
✉✉
✉✉
✉

ρ ((■
■■

■■
■■

H0 G0

Composition, identities and 2-morphisms of butterflies can be
obtained from the corresponding notions for fractors.
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Internal Butterflies - III

A 2-cells E ⇒ E ′ corresponds to a morphism in E f : E → E ′ s.t.
all the following diagrams commute:

H
κ

((■
■■

■■
■■

κ′

))✻
✻✻

✻✻
✻✻

✻✻
✻✻

∂

##

G

∂

##

ι

''✉✉
✉✉
✉✉
✉

ι′

**✟✟
✟✟
✟✟
✟✟
✟✟
✟

E

f##

δ

++✟✟
✟✟
✟✟
✟✟
✟✟
✟

γ

,,✻
✻✻

✻✻
✻✻

✻✻
✻✻

E ′

δ′''✈✈
✈✈
✈✈

γ′ ((❍
❍❍

❍❍
❍

H0 G0

Butterflies and 2-cells form a locally groupoidal bicategory
Butt(E). Examples
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Kernels of butterflies - I

We can use butterflies in order to apply the methods used for
2-groups in a wider context.

Example: The kernel of a Butterfly

We translate the construction of the standard h-kernel for 2-groups:

H
1 !!

∂

##
✤
✤
✤
✤ H

κ

--❏
❏❏❏

❏❏

∂

##

G

∂

##

ι

'',,,
,,,

K
K
!!

0

..
H
e //

✤
E
!! G E

σ''✉✉
✉✉
✉

ρ ((■
■■

■■

K0
ker ρ
!! E σ

!! H0 G0

We obtain a crossed module K, a morphism K : K → H and a
2-morphism NE ⇒ 0 universal w.r.t. (homotopic) universal
property.
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Kernels of butterflies - II

Recall from [E K VdL 2005] that the (only non-trivial) homology
objects of a crossed module ∂ : H → H0 are

H0(∂ : H → H0) = coker(∂)

H1(∂ : H → H0) = ker(∂)

They correspond to the homotopy invariants π0 (connected
components) and π1 (automorphism of 0), so that weak
equivalences coincide with homology isomorphisms.

This fact has applications. . .
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Kernels of butterflies - III

Proposition: From a kernel diagram

K
K
!!

0

00
H
e //

✤
E
!! G

one can get the long exact sequence:

0 !! H1(K) !! H1(H) !! H1(G)
δ !! H0(K) !! H0(H) !! H0(G)

Proof.
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Cokernels of butterflies

Can we construct cokernels of butterflies as we have done for
kernels?

H
κ

--❏
❏❏❏

❏❏

∂

##

G

∂

##

ι

'',,,
,,,

ι !! E
cokκ !! C

∂

##
✤
✤
✤
✤

E

σ''✉✉
✉✉
✉

ρ ((■
■■

■■

H0 G0 1
!! G0

This way we do not obtain a crossed module: the arrow
∂ : C → G0 is just a morphism in E .
Again, the case of 2-groups shows the way: E : H ✤ !! G needs
to be braided.
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Braiding

Braidings and symmetries are higher dimensional generalizations of
the notion of the commutativity of an algebraic operation.

At the (1-)categorical level this condition is internal: for E unital,
an object G is commutative if it is endowed with a magma
structure, i.e. there exists an “operation”

P : G × G !! G

that makes the triangles commute

G

1
11❋

❋❋
❋❋

❋❋
❋❋
〈1,0〉
!! G × G

P
##

G
〈0,1〉
""

1
22①①
①①
①①
①①
①

G

This condition is too strong if applied to internal groupoids or to
crossed modules.
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Braiding

A notion of braided crossed module (of groups) comes from
homotopy theory – from the Samelson product [W 1974].

For the case of 2-groups, the notion of braiding has been
developed in the wider context of monoidal categories by Joyal and
Street [J S 1986].

We start from the last, since 2-groups better fit the conceptual
framework: we will come back to crossed modules via butterflies.
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Braided 2-groups - I

A braided 2-group [A. Joyal R. Street 1986] is a 2-group (G,+, 0)
equipped with a braiding function t : G0 × G0

!!❴❴❴ G1 such that:

1. t(x , y) : x + y
∼ !! y + x

2. x + y
t(x ,y) ##

f+g !! x ′ + y ′

t(x ′,y ′)##
y + x

g+f
!! y ′ + x ′

3. x + y + z
t+1 !!

t 33❯❯❯
❯❯❯❯

y + x + z
1+t##

y + z + x

x + y + z
1+t !!

t 33❯❯❯
❯❯❯❯

x + z + y
t+1##

z + x + y
The braiding is symmetric if moreover

4. t(y , x) = t(x , y)−1
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Braided 2-groups - II

The following facts are equivalent:

◮ G is braided

◮ +: G×G !! G is monoidal

◮ G is a weak commutative object in 2Gp, i.e. there exist P
monoidal and two 2-iso ℓ and r

G

1
11❋

❋❋
❋❋

❋❋
❋❋

J1 !! G×G

P
##

GJ2""

1
22①①
①①
①①
①①
①

⇐ ℓ

G

r ⇒

Only the third notion is internal. . .
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Braided internal groupoids

Definition.

A braided internal groupoid is a G equipped with a fractor
P : G×G ✤ !! G and two 2-isomorphisms that make it a weak
commutative object in Fract(E).
A morphism of braided groupoids is a fractor between them
compatible with the braidings up to 2-isomorphism.

Now we can see how we can rid of the 2-cells in the definition and
give a description of braided crossed modules.
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Braided internal crossed modules - I

Definition - Proposition. A crossed module G is braided (give
rise to a braided groupoid) if(f) it is equipped with a butterfly P
and two morphisms s1, s2

G × G

∂×∂

##

α

44▼▼
▼▼

▼▼
▼▼

G
β

22✇✇
✇✇
✇✇
✇

∂

##

P

γ55222
222

22

δ 11●
●●

●●
● G0

s1 !!
s2

!! P

G0 × G0 G0

such that the diagrams commute:

G0
si !!

ji ((❏
❏❏

❏❏
❏ P

γ
##

G0 × G0

G0
si !!

1 66❇
❇❇

❇❇
P

δ##
G0

G0
〈ji ,1〉!!

∂ ##

G × G × G

α*β
##

G0 si
!! P
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Braided internal crossed modules - II

Remark. Given a braiding (P , s1, s2) on a crossed module G we
define the morphism cG : (G0|G0) → G , that is the unique arrow
that makes the diagram commute (. . . and a pullback):

(G0|G0)
CG !!❴❴❴❴

##

G

β

##
G0 + G0

[s2,s1]
!! P

This gives a connection with the classic notion of braided crossed
module of groups.
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Braided internal crossed modules - III

Definition. [??, Conduche 1983] A braided crossed module is a

crossed module G
∂ !! G0 endowed with a map

{ , } : G0 × G0
!!❴❴❴ G

such that, for any x , y , z in G0, and a, b in G ,

1. {x , y + z} = y · {x , z}+ {x , y}
2. {x + y , z} = {x , z}+ x · {y , z}
3. ∂{x , y} = [y , x ]

4. {∂a, x} = x · a− a

5. {y , ∂b} = b − y · b
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Braided internal crossed modules - V

Internally, we do not have (yet!) a characterization of braided
crossed modules in terms of the morphisms

cG : (G0|G0) !! G ,

but they seem to be relevant for some constructions, for instance,
for the cokernel of a butterfly.
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Braided internal crossed modules - IV

In order to understand the definition of braided crossed module we
observe that the diagrams

G0
〈j1,1〉!!

∂
##

G × G × G

α*β
##

G0 s1
!! P

G0
〈j2,1〉!!

∂
##

G × G × G

α*β
##

G0 s2
!! P

of the definition underlie two (strict) morphisms of crossed modules

S1 : G !! P S2 : G !! P
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Braided internal groupoids - Reprise

We obtain the following characterization:
Proposition. A groupoid (crossed module) G is braided iff it is
endowed with a fractor (butterfly)

G×G !!✤P !! G

with canonical span representation (Γ,P,∆) and two internal

functors (morphisms) G Si !! P , i = 1, 2, such that

SiΓ = Ji

Si∆ = 1G

G
Si
##Ji

77

id

88

P

Γ&&⑧⑧
⑧⑧
⑧⑧

∆ %%❄
❄❄

❄❄
❄

G×G ✤
P

!! G
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Symmetric internal groupoids I

The symmetry condition t(y , x) = t(x , y)−1 can be re-stated by
saying that t is not only natural, but also monoidal, or
equivalently, in terms of the operation P .

This gives the definition of symmetric internal groupoid: a
braided internal groupoid (G,P , S1, S2) with a 2-cell t

G×G

Tw

##

✝
❋❋

❋❋
❋

P

11❋
❋❋

❋❋

⇓ t G

G×G

✽
①①①①① P

99①①①①①

Remark: also in the internal case, being symmetric does not add
structure to the braiding: the 2-cell t, if it exists, is unique.
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Symmetric internal groupoids II

It is remarkable to observe that symmetry may coincide with
braiding:

Example: 2-Lie Algebras.
A braided 2-Lie algebra L has, for any pair of objects x , y a natural
isomorphism

[x , y ]
∼ !! 0

Every braided 2-Lie algebra is automatically symmetric.

Giuseppe Metere Braided and symmetric internal groupoids



Intro
Internal crossed modules
Braiding and Symmetry

O. Abbad, S. Mantovani, G. Metere and E.M. Vitale, Butterflies in a semi-abelian context, arXiv

(2011).

E. Aldrovandi and B. Noohi, Butterflies I: Morphisms of 2-group stacks, Advances in Mathematics 221

(2009) 687–773.

G. Janelidze, Internal crossed modules, Georgian Mathematical Journal 10 (2003) 99–114.

A. Joyal and R. Street, Braided monoidal categories, Macquarie Math Reports 860081 (1986)

T. Everaert, R. W. Kieboom and T. Van der Linden, Model structures for homotopy of internal

categories, T.A.C. 15 (2005) no.3 66–94.

N. Martins-Ferreira and T. Van der Linden, A note on the “Smith is Huq” condition, Appl. Categ.

Structures (2010).

B. Noohi, On weak maps between 2-groups, arXiv (2005) .

E.M. Vitale, Bipullbacks and calculus of fractions, Cahiers de Topologie et Géométrie Différentielle
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Kernels of butterflies - proof

0 !! H1(K)

##

!! •

##

H1(H)

##

•

##

!! H1(G)

##

H × G
πH

::777
777

777

κ*ι

##

πG

;;88
888

888
8

H
1 !!

〈1,0〉
!!

∂

##

H × G

κ*ι

##

πH !! H
κ

;;88
888

888
888

∂

##

G

∂

##

ι

::777
777

777
77

E

σ::777
777

777
7

ρ ;;88
888

888
88

##

K0

##

ker ρ
!! E

##

σ
!! H0

##

G0

##
H0(K) !! • H0(H) • !! H0(G)

back
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Examples of butterflies

We show how to construct the weak morphism associated to a
butterfly in the cases of groups, Lie algebras and Rings.
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The technique

Let us consider the butterfly E in a semi-abelian algebraic variety
C, and let U : C → S (the axiom of choice holding in S) a suitable
“forgetful” functor. Let s be a section of σ in S:

H
κ

((■
■■

■■
■■

∂

##

G

∂

##

ι

''✈✈
✈✈
✈✈
✈

E

σ22✈✈
✈✈
✈✈

ρ 11❍
❍❍

❍❍
❍

H0

s
99✈

✈
✈

G0

The w.e. of the canonical span H EΣ"" R !! G associated to
E is an equivalence in Gpd(S), so that it has a weak inverse Σ∗.
The composition Σ∗R in Gpd(S) is the weak morphism H → G.
Coherence conditions are encoded in the extension of the butterfly.
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Examples of butterflies: Groups I

Let C = Gp, and U : Gp → Set∗. Under the equivalence between
crossed modules and groupoids, ∂ : H → H0 yields the groupoid

G1 = G ⋊ G0

d !!

c
!! G0e"" where

c : (g , x) (→ x , d : (g , x) (→ ∂g + x , e : x (→ (0, x).

Define the monoidal functor FE = (F0,F1,F2):

F0 = sρ : H0 → G0; x (→ ρ(sx)

F1 = F ⋊ F0 where

F : H → G ; h (→ −κ(h) + s(∂(h))

F2 : H0 × H0 → G1; (x , y) (→ (sx + sy − s(x + y), ρ(s(x + y)))

Notice that,F2(x , y) is an arrow F0(x + y) → F0(x) + F0(y).
Giuseppe Metere Braided and symmetric internal groupoids
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Examples of butterflies: Groups II

From the classification of group extensions we know that with the
short exact sequence

G
κ !! E

σ !! H0

with a chosen set-theoretical section s of σ we can associate two
functions α : H0 → AutG and f : H0 × H0 → G : with
α(x)(g) = x · g = sx + g − sx and f (x , y) = sx + sy − s(x + y).
Such functions satisfy the following well known relation: for any
x , y , z in H0

x · f (y , z) + f (x , yz) = f (x , y) + f (xy , z).

It is now easy to show that this relation corresponds precisely to
what is necessary in order to prove (associative) coherence for the
monoidal functor FE .
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Examples of butterflies: Lie algebras I

A groupoid in Lie is called a strict Lie 2-Algebra. We consider the
forgetful functor U : Lie → Vect. and we define FE with the same
technique as before.
Indeed F0 and F1 are defined in the same way (provided the
semidirect product is performed in Lie!), while

F2 : (x , y) (→ ([sx , sy ]− s[x , y ], ρ(s[x , y ])).

Giuseppe Metere Braided and symmetric internal groupoids
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Examples of butterflies: Lie algebras II

From the theory of Lie algebras extensions, we know that with the
extension (ι,σ) (and a linear section s of σ) is associated a linear
map α : H0 → DerG , α(x)(g) = x · g = [sx , g ], and a bilinear
skew-symmetric map f : H0 × H0 → G , f (x , y) = [sx , sy ]− s[x , y ].
These maps satisfy the relations

(i) for any x , y in H0, [α(x),α(y)]− α([x , y ]) = adf (x ,y)

(ii) for any x , y , z in H0

!

cyclic

(x · f (y , z)− f ([x , y ], z)) = 0

where adg is the (adjoint) action defined by adg (g
′) = [g , g ′].

The first relation helps in proving the naturality of F2, the second
yields the coherence of the bracket operation with respect to the
jacobian identity.

Giuseppe Metere Braided and symmetric internal groupoids
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Examples of butterflies: Rings I

We call (strict) 2-ring a groupoid in the category of rings.
We consider the forgetful functor U : Rng → Set∗. The definition
of FE goes verbatim as in the case of groups, the additive notation
expressing the underlying abelian group.
The exact sequence (ι,σ) provides the data for proving that FE is
a 2-ring homomorphism.
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Examples of butterflies: Rings II

In fact we use s, the set-theoretical section of σ, to define
f , ε : H0 × H0 → G : f (x , y) = sx + sy − s(x + y),
ε(x , y) = sx · sy − s(x · y), and a map α : H0 → BimG with
α(x)(g) = (sx · g , g · sx). Then the following relations hold for any
x , y , z and t in H0

(i) α(x) + α(y)− α(x + y) = µf (x ,y)

(ii) α(x) ◦ α(y)− α(xy) = −µε(x ,y)

(iii) f (0, y) = 0 = f (x , 0) and ε(0, y) = 0 = ε(x , 0)
(iv) f (x , y) + f (z , t)− f (x + z , y + t)− f (x , z)− f (y , t) + f (x +

y , z + t) = 0
(v) −ε(x , t)− ε(y , t) + ε(x + y , t) + f (xt, yt)− f (x , y) · t = 0
(vi) ε(t, x) + ε(t, y)− ε(t, x + y)− f (tx , ty) + f · h(x , y) = 0
(vii) x · ε(y , z)− ε(xy , z) + ε(x , yz)− ε(x , y) · z = 0

where µg is the inner bimultiplication induced by the multiplication
with g .
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Examples of butterflies: Rings III

Now, (i) and (ii) give the naturality of F2. Moreover, since the
normalization conditions (iii) hold, the relation (iv) gives at once
associative and symmetric coherence: actually for y = 0 we obtain
the cocycle condition for the underlying (abelian) group extension,
while letting x = t = 0 we get the symmetric coherence. Finally
(vii) yields the associative coherence for the multiplication, and (v)
and (vi) give the distributive coherence.

back
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