Braided and symmetric internal groupoids

Giuseppe Metere

Università di Milano
Milano, Italy

CatAlg 2011
Gargnano del Garda (BS)

Overview

- Intro
- Crossed Modules and Weak Morphisms
- Braiding and Symmetry

Intro

We are concerned with the study of the algebraic properties of categories internal to a semi-abelian category \mathcal{E} (leading example $\mathcal{E}=\mathbf{G p}$, the category of groups).

$$
C_{1} \times C_{0} C_{1} \xrightarrow{m} C_{1} \underset{d}{\stackrel{c}{\leftarrow}} C_{0}
$$

Since \mathcal{E} Mal'cev, $\operatorname{Cat}(\mathcal{E})=\operatorname{Gpd}(\mathcal{E})$.
Fact. A category in $\mathbf{G p}$ is the same as a group in Cat, i.e. a strict 2-group.
The weak version of this, categorical groups, arose in algebraic geometry (gr-categories). They have been extensively studied and notions such as that of commutativity, of exact sequences, factorization system, etc. have been introduced and studied.

Weak morphisms

Is it possible to develop a similar theory in an intrinsic setting?
To answer this question, it is important to decide how the objects organize in a 2-category.
For the 2-category of 2-groups (strict categorical groups) there are (at least) two meaningful notions of morphisms:

- internal functors
- monoidal functors

Weak morphisms

Internal functors... (\Leftrightarrow Strict monoidal functors)

$$
\begin{aligned}
& H_{1} \xrightarrow{F_{1}} G_{1} \\
& d|\uparrow| \downarrow \quad a|\downarrow| \downarrow c \\
& H_{0} \xrightarrow[F_{0}]{ } G_{0}
\end{aligned}
$$

i.e. $\left(F_{1}, F_{0}\right)$ are group homomorphisms, compatible with the categorical structure of \mathbb{H} and \mathbb{G}. The corresponding 2-category is denoted $\mathbf{2 G} \mathbf{p}_{\text {str }}$.

Weak morphisms

Monoidal functors...

$$
\begin{gathered}
H_{1}-\frac{F_{1}}{->}>G_{1} \\
\downarrow|\uparrow| \downarrow c \quad d|\uparrow| \downarrow c \\
H_{0}-\frac{F_{0}}{-}>G_{0}
\end{gathered}
$$

i.e. $\left(F_{1}, F_{0}\right)$ are functions in Set, compatible with the categorical structure of \mathbb{H} and \mathbb{G}, and with the group operations only up to isomorphisms.
The corresponding 2-category is denoted 2Gp.

Weak morphisms

Many important properties of 2-groups cannot be observed with only the strict monoidal functors available. Need an internal notion of (weak) monoidal functor.
Theorem (Vitale 2010) The embedding $\mathbf{2 G p}$ str $\rightarrow \mathbf{2 G p}$ is the bicategory of fractions of $\mathbf{2 G} \mathbf{p}_{\text {str }}$, w.r.t. the class of internal weak equivalences.

The analogous result holds for $\mathbf{2 L i e}=\mathbf{G p d}($ Lie $)$

Weak morphisms

Theorem (Mantovani, M., Vitale 2011) Let \mathcal{E} be Barr-exact. The bicategory of fractions of $\operatorname{Gpd}(\mathcal{E})$ w.r.t. (internal) weak equivalences can be described by fractors, i.e. profunctors

$$
\mathbb{H} \xrightarrow{E} \mathbb{G}
$$

whose canonical span representation has the left leg a surjective weak equivalence.
Fractors organize in a bicategory $\operatorname{Fract}(\mathcal{E})$.
Fractors give a notion of weak morphism of internal groupoids in \mathcal{E}, equivalent to that of monoidal functors when $\mathcal{E}=\mathbf{G p}$.

Crossed modules in \mathcal{E} - I

For making computations easier with 2-groups and strict monoidal functors, one can use crossed modules of groups.

This notion has been internalized in the semi-abelian context by G. Janelidze, so that internal crossed modules can be used for computing with internal groupoids and internal functors.

Crossed modules in \mathcal{E} - II

An internal crossed module \mathbb{G} in a semi-abelian category \mathcal{E} [J 2003], with "Smith = Huq" can be described [MF VdL 2010] as a pair

$$
G_{0} b G \xrightarrow{\xi} G \xrightarrow{\partial} G_{0}
$$

making the diagrams commute:

A (strict) morphism of crossed modules $\mathbb{H} \longrightarrow \mathbb{G}$ is a pair of equivariant morphisms $F: H \longrightarrow G, F_{0}: H_{0} \longrightarrow G_{0}$.

Crossed modules in \mathcal{E} - III

Theorem. (Janelidze 2010) There is an equivalence of categories

$$
\underline{\operatorname{Xmod}}(\mathcal{E}) \simeq \underline{\operatorname{Gpd}}(\mathcal{E})
$$

Exercise. The equivalence above underlies a bi-equivalence of 2-categories

$$
\operatorname{Xmod}(\mathcal{E}) \simeq \operatorname{Gpd}(\mathcal{E})
$$

Crossed modules in \mathcal{E} - IV

We can extend the biequivalence:

As fractors model weak morphisms of groupoids, there is a notion of weak morphism of crossed modules, that corresponds to fractors under the (bi)equivalence: butterflies.

Internal butterflies - I

Butterflies were introduced by B. Noohi in [Noo05] for the category of groups. Here we recall their internal definition [AMMV11]. A butterfly $E: \mathbb{H} \longrightarrow \mathbb{G}$:

i. (κ, ρ) is a complex
ii. (ι, σ) is an extension
iii. iv. the two diagrams on the right commute

Internal Butterflies - II

Fact: butterflies correspond to fractors.

Composition, identities and 2-morphisms of butterflies can be obtained from the corresponding notions for fractors.

Internal Butterflies - III

A 2-cells $E \Rightarrow E^{\prime}$ corresponds to a morphism in $\mathcal{E} f: E \rightarrow E^{\prime}$ s.t. all the following diagrams commute:

Butterflies and 2-cells form a locally groupoidal bicategory Butt (\mathcal{E}).

Kernels of butterflies - I

We can use butterflies in order to apply the methods used for 2-groups in a wider context.
Example: The kernel of a Butterfly
We translate the construction of the standard h-kernel for 2-groups:

We obtain a crossed module \mathbb{K}, a morphism $K: \mathbb{K} \rightarrow \mathbb{H}$ and a 2-morphism $N E \Rightarrow 0$ universal w.r.t. (homotopic) universal property.

Kernels of butterflies - II

Recall from [E K VdL 2005] that the (only non-trivial) homology objects of a crossed module $\partial: H \rightarrow H_{0}$ are

$$
\begin{aligned}
& \mathcal{H}_{0}\left(\partial: H \rightarrow H_{0}\right)=\operatorname{coker}(\partial) \\
& \mathcal{H}_{1}\left(\partial: H \rightarrow H_{0}\right)=\operatorname{ker}(\partial)
\end{aligned}
$$

They correspond to the homotopy invariants π_{0} (connected components) and π_{1} (automorphism of 0), so that weak equivalences coincide with homology isomorphisms.
This fact has applications...

Kernels of butterflies - III

Proposition: From a kernel diagram

one can get the long exact sequence:

$$
0 \rightarrow \mathcal{H}_{1}(\mathbb{K}) \rightarrow \mathcal{H}_{1}(\mathbb{H}) \rightarrow \mathcal{H}_{1}(\mathbb{G}) \xrightarrow{\delta} \mathcal{H}_{0}(\mathbb{K}) \rightarrow \mathcal{H}_{0}(\mathbb{H}) \rightarrow \mathcal{H}_{0}(\mathbb{G})
$$

Cokernels of butterflies

Can we construct cokernels of butterflies as we have done for kernels?

This way we do not obtain a crossed module: the arrow $\partial: C \rightarrow G_{0}$ is just a morphism in \mathcal{E}.
Again, the case of 2-groups shows the way: $E: \mathbb{H} \longrightarrow \mathbb{G}$ needs to be braided.

Braiding

Braidings and symmetries are higher dimensional generalizations of the notion of the commutativity of an algebraic operation.
At the (1-)categorical level this condition is internal: for \mathcal{E} unital, an object G is commutative if it is endowed with a magma structure, i.e. there exists an "operation"

$$
P: G \times G \longrightarrow G
$$

that makes the triangles commute

This condition is too strong if applied to internal groupoids or to crossed modules.

Braiding

A notion of braided crossed module (of groups) comes from homotopy theory - from the Samelson product [W 1974].

For the case of 2-groups, the notion of braiding has been developed in the wider context of monoidal categories by Joyal and Street [J S 1986].
We start from the last, since 2-groups better fit the conceptual framework: we will come back to crossed modules via butterflies.

Braided 2-groups - I

A braided 2-group [A. Joyal R. Street 1986] is a 2-group ($\mathbb{G},+, 0$) equipped with a braiding function $t: G_{0} \times G_{0}->G_{1}$ such that:

1. $t(x, y): x+y \xrightarrow{\sim} y+x$
2. $x+y \xrightarrow{f+g} x^{\prime}+y^{\prime}$

$$
\begin{gathered}
t(x, y) \downarrow \\
y+x \xrightarrow[g+f]{ } y^{\prime}+x^{\prime}
\end{gathered}
$$

The braiding is symmetric if moreover
4. $t(y, x)=t(x, y)^{-1}$

Braided 2-groups - II

The following facts are equivalent:

- \mathbb{G} is braided
$\bullet+: \mathbb{G} \times \mathbb{G} \longrightarrow \mathbb{G}$ is monoidal
- \mathbb{G} is a weak commutative object in 2Gp, i.e. there exist P monoidal and two 2-iso ℓ and r

Only the third notion is internal. . .

Braided internal groupoids

Definition.

A braided internal groupoid is a \mathbb{G} equipped with a fractor $P: \mathbb{G} \times \mathbb{G} \longrightarrow \mathbb{G}$ and two 2-isomorphisms that make it a weak commutative object in $\operatorname{Fract}(\mathcal{E})$.
A morphism of braided groupoids is a fractor between them compatible with the braidings up to 2-isomorphism.

Now we can see how we can rid of the 2-cells in the definition and give a description of braided crossed modules.

Braided internal crossed modules - I

Definition - Proposition. A crossed module \mathbb{G} is braided (give rise to a braided groupoid) if(f) it is equipped with a butterfly P and two morphisms s_{1}, s_{2}

such that the diagrams commute:

$$
\begin{array}{cc}
G_{0} \xrightarrow{\left\langle j_{i}, 1\right\rangle} G & \times G \times G \\
\partial \downarrow \\
G_{0} \xrightarrow[s_{i}]{ } & \stackrel{\downarrow \alpha \sharp \beta}{ }
\end{array}
$$

Braided internal crossed modules - II

Remark. Given a braiding $\left(P, s_{1}, s_{2}\right)$ on a crossed module \mathbb{G} we define the morphism $c_{G}:\left(G_{0} \mid G_{0}\right) \rightarrow G$, that is the unique arrow that makes the diagram commute (... and a pullback):

This gives a connection with the classic notion of braided crossed module of groups.

Braided internal crossed modules - III

Definition. [??, Conduche 1983] A braided crossed module is a crossed module $G \xrightarrow{\partial} G_{0}$ endowed with a map

$$
\{,\}: G_{0} \times G_{0}->G
$$

such that, for any x, y, z in G_{0}, and a, b in G,

1. $\{x, y+z\}=y \cdot\{x, z\}+\{x, y\}$
2. $\{x+y, z\}=\{x, z\}+x \cdot\{y, z\}$
3. $\partial\{x, y\}=[y, x]$
4. $\{\partial a, x\}=x \cdot a-a$
5. $\{y, \partial b\}=b-y \cdot b$

Braided internal crossed modules - V

Internally, we do not have (yet!) a characterization of braided crossed modules in terms of the morphisms

$$
c_{G}:\left(G_{0} \mid G_{0}\right) \longrightarrow G,
$$

but they seem to be relevant for some constructions, for instance, for the cokernel of a butterfly.

Braided internal crossed modules - IV

In order to understand the definition of braided crossed module we observe that the diagrams

$$
\begin{aligned}
& G_{0} \xrightarrow{\left\langle j_{1}, 1\right\rangle} G \times G \times G \quad G_{0} \xrightarrow{\left\langle j_{2}, 1\right\rangle} G \times G \times G \\
& { }^{\partial} \downarrow_{0} \xrightarrow[s_{1}]{ } \stackrel{\downarrow^{\alpha \nless \beta}}{P}
\end{aligned}
$$

of the definition underlie two (strict) morphisms of crossed modules

$$
S_{1}: \mathbb{G} \longrightarrow \mathbb{P} \quad S_{2}: \mathbb{G} \longrightarrow \mathbb{P}
$$

Braided internal groupoids - Reprise

We obtain the following characterization:
Proposition. A groupoid (crossed module) \mathbb{G} is braided iff it is endowed with a fractor (butterfly)

$$
\mathbb{G} \times \mathbb{G} \xrightarrow{P_{\perp}} \mathbb{G}
$$

with canonical span representation $(\Gamma, \mathbb{P}, \Delta)$ and two internal functors (morphisms) $\mathbb{G} \xrightarrow{S_{i}} \mathbb{P}, i=1,2$, such that

$$
\begin{aligned}
S_{i} \Gamma & =J_{i} \\
S_{i} \Delta & =1_{\mathbb{G}}
\end{aligned}
$$

Symmetric internal groupoids I

The symmetry condition $t(y, x)=t(x, y)^{-1}$ can be re-stated by saying that t is not only natural, but also monoidal, or equivalently, in terms of the operation P.
This gives the definition of symmetric internal groupoid: a braided internal groupoid ($\mathbb{G}, P, S_{1}, S_{2}$) with a 2-cell t

Remark: also in the internal case, being symmetric does not add structure to the braiding: the 2 -cell t, if it exists, is unique.

Symmetric internal groupoids II

It is remarkable to observe that symmetry may coincide with braiding:

Example: 2-Lie Algebras.
A braided 2-Lie algebra L has, for any pair of objects x, y a natural isomorphism

$$
[x, y] \xrightarrow{\sim} 0
$$

Every braided 2-Lie algebra is automatically symmetric.
O. Abbad, S. Mantovani, G. Metere and E.M. Vitale, Butterflies in a semi-abelian context, arXiv (2011).
E. Aldrovandi and B. Noohi, Butterflies I: Morphisms of 2-group stacks, Advances in Mathematics 221 (2009) 687-773.
G. Janelidze, Internal crossed modules, Georgian Mathematical Journal 10 (2003) 99-114.
A. Joyal and R. Street, Braided monoidal categories, Macquarie Math Reports 860081 (1986)

T. Everaert, R. W. Kieboom and T. Van der Linden, Model structures for homotopy of internal categories, T.A.C. 15 (2005) no. 3 66-94.
N. Martins-Ferreira and T. Van der Linden, A note on the "Smith is Huq" condition, Appl. Categ. Structures (2010).
B. NOOHI, On weak maps between 2-groups, arXiv (2005) .
E.M. Vitale, Bipullbacks and calculus of fractions, Cahiers de Topologie et Géométrie Différentielle Catégorique 51 (2010) 83-113.
G.W. Whitehead, Elements of homotopy theory, GTM 61 (1974).

Kernels of butterflies - proof

Examples of butterflies

We show how to construct the weak morphism associated to a butterfly in the cases of groups, Lie algebras and Rings.

The technique

Let us consider the butterfly E in a semi-abelian algebraic variety \mathcal{C}, and let $U: \mathcal{C} \rightarrow \mathcal{S}$ (the axiom of choice holding in \mathcal{S}) a suitable "forgetful" functor. Let s be a section of σ in \mathcal{S} :

The w.e. of the canonical span $\mathbb{H} \underset{ }{\Sigma} \mathbb{E} \xrightarrow{R} \mathbb{G}$ associated to E is an equivalence in $\operatorname{Gpd}(\mathcal{S})$, so that it has a weak inverse Σ^{*}. The composition $\Sigma^{*} R$ in $\operatorname{Gpd}(\mathcal{S})$ is the weak morphism $\mathbb{H} \rightarrow \mathbb{G}$. Coherence conditions are encoded in the extension of the butterfly.

Examples of butterflies: Groups I

Let $\mathcal{C}=\mathbf{G p}$, and $U: \mathbf{G p} \rightarrow \mathbf{S e t}_{*}$. Under the equivalence between crossed modules and groupoids, $\partial: H \rightarrow H_{0}$ yields the groupoid

$$
\begin{gathered}
G_{1}=G \rtimes G_{0} \underset{c}{\stackrel{d}{\rightleftarrows}} G_{0} \quad \text { where } \\
c:(g, x) \mapsto x, \quad d:(g, x) \mapsto \partial g+x, \quad e: x \mapsto(0, x) .
\end{gathered}
$$

Define the monoidal functor $F_{E}=\left(F_{0}, F_{1}, F_{2}\right)$:
$F_{0}=s \rho: H_{0} \rightarrow G_{0} ; \quad x \mapsto \rho(s x)$
$F_{1}=F \rtimes F_{0} \quad$ where

$$
F: H \rightarrow G ; \quad h \mapsto-\kappa(h)+s(\partial(h))
$$

$F_{2}: \quad H_{0} \times H_{0} \rightarrow G_{1} ; \quad(x, y) \mapsto(s x+s y-s(x+y), \rho(s(x+y)))$
Notice that, $F_{2}(x, y)$ is an arrow $F_{0}(x+y) \rightarrow F_{0}(x)+F_{0}(y)$.

Examples of butterflies: Groups II

From the classification of group extensions we know that with the short exact sequence

$$
G \xrightarrow{\kappa} E \xrightarrow{\sigma} H_{0}
$$

with a chosen set-theoretical section s of σ we can associate two functions $\alpha: H_{0} \rightarrow \operatorname{Aut} G$ and $f: H_{0} \times H_{0} \rightarrow G$: with $\alpha(x)(g)=x \cdot g=s x+g-s x$ and $f(x, y)=s x+s y-s(x+y)$. Such functions satisfy the following well known relation: for any x, y, z in H_{0}

$$
x \cdot f(y, z)+f(x, y z)=f(x, y)+f(x y, z)
$$

It is now easy to show that this relation corresponds precisely to what is necessary in order to prove (associative) coherence for the monoidal functor F_{E}.

Examples of butterflies: Lie algebras I

A groupoid in Lie is called a strict Lie 2-Algebra. We consider the forgetful functor $U:$ Lie \rightarrow Vect. and we define F_{E} with the same technique as before.
Indeed F_{0} and F_{1} are defined in the same way (provided the semidirect product is performed in Lie!), while

$$
F_{2}:(x, y) \mapsto([s x, s y]-s[x, y], \rho(s[x, y]))
$$

Examples of butterflies: Lie algebras II

From the theory of Lie algebras extensions, we know that with the extension (ι, σ) (and a linear section s of σ) is associated a linear $\operatorname{map} \alpha: H_{0} \rightarrow \operatorname{Der} G, \alpha(x)(g)=x \cdot g=[s x, g]$, and a bilinear skew-symmetric map $f: H_{0} \times H_{0} \rightarrow G, f(x, y)=[s x, s y]-s[x, y]$. These maps satisfy the relations
(i) for any x, y in $H_{0},[\alpha(x), \alpha(y)]-\alpha([x, y])=\operatorname{ad}_{f(x, y)}$
(ii) for any x, y, z in H_{0}

$$
\sum_{\text {cyclic }}(x \cdot f(y, z)-f([x, y], z))=0
$$

where $\operatorname{ad} g$ is the (adjoint) action defined by $\operatorname{ad}_{g}\left(g^{\prime}\right)=\left[g, g^{\prime}\right]$. The first relation helps in proving the naturality of F_{2}, the second yields the coherence of the bracket operation with respect to the jacobian identity.

Examples of butterflies: Rings I

We call (strict) 2-ring a groupoid in the category of rings. We consider the forgetful functor $U:$ Rng \rightarrow Set $_{*}$. The definition of F_{E} goes verbatim as in the case of groups, the additive notation expressing the underlying abelian group.
The exact sequence (ι, σ) provides the data for proving that F_{E} is a 2 -ring homomorphism.

Examples of butterflies: Rings II

In fact we use s, the set-theoretical section of σ, to define $f, \epsilon: H_{0} \times H_{0} \rightarrow G: f(x, y)=s x+s y-s(x+y)$,
$\epsilon(x, y)=s x \cdot s y-s(x \cdot y)$, and a map $\alpha: H_{0} \rightarrow \operatorname{Bim} G$ with $\alpha(x)(g)=(s x \cdot g, g \cdot s x)$. Then the following relations hold for any x, y, z and t in H_{0}
(i) $\alpha(x)+\alpha(y)-\alpha(x+y)=\mu_{f(x, y)}$
(ii) $\alpha(x) \circ \alpha(y)-\alpha(x y)=-\mu_{\epsilon(x, y)}$
(iii) $f(0, y)=0=f(x, 0)$ and $\epsilon(0, y)=0=\epsilon(x, 0)$
(iv) $f(x, y)+f(z, t)-f(x+z, y+t)-f(x, z)-f(y, t)+f(x+$

$$
y, z+t)=0
$$

(v) $-\epsilon(x, t)-\epsilon(y, t)+\epsilon(x+y, t)+f(x t, y t)-f(x, y) \cdot t=0$
(vi) $\epsilon(t, x)+\epsilon(t, y)-\epsilon(t, x+y)-f(t x, t y)+f \cdot h(x, y)=0$
(vii) $x \cdot \epsilon(y, z)-\epsilon(x y, z)+\epsilon(x, y z)-\epsilon(x, y) \cdot z=0$
where μ_{g} is the inner bimultiplication induced by the multiplication with_o

Examples of butterflies: Rings III

Now, (i) and (ii) give the naturality of F_{2}. Moreover, since the normalization conditions (iii) hold, the relation (iv) gives at once associative and symmetric coherence: actually for $y=0$ we obtain the cocycle condition for the underlying (abelian) group extension, while letting $x=t=0$ we get the symmetric coherence. Finally (vii) yields the associative coherence for the multiplication, and (v) and (vi) give the distributive coherence.

