Relative
00000

ideals

Intro

Comparison with Ideally Exact Cats

Application: varieties of hoops

Dipartimento di Matematica

Milano, 22 March 2024

Relative ideals in homological categories

Giuseppe Metere* Università degli Studi di Milano

* From an ongoing joint project with Sara Lapenta e Luca Spada

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
•0	0000000	0000	0000000

An elementary example

R unital ring, $I \subseteq R$ (bilateral) ideal. Fact. If $I \leq R$ in **Ring**, then I = R.

Can we deal with ideals of unital rings categorically?

Observe: $I \leq R$ in **Rng**, and **Ring** is a subcategory of **Rng**.

More precisely, ideals in Ring are kernels in the semi-abelian category Rng

Idea. Investigate the inclusion functor

 $U \colon \mathbf{Ring} \to \mathbf{Rng}$

+ determine nice behavior of ideals that can be deduced from properties of U. Observe:

- U is faithful, but not full.
- U is conservative, i.e. it reflects isomorphisms.
- U is a right adjoint, and its left adjoint F freely adds the unit element.

Intro ○●	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops

Some glossary

A category **B** with finite limits is:

- pointed: $0 \rightarrow 1$ is an isomorphism.
- regular: p.b. stable regular epis + coequalizers of effective equiv. relations
- Barr-exact: regular + all equiv. relations are effective
- protomodular: $f^* : \operatorname{Pt}_{B}(B) \to \operatorname{Pt}_{B}(E)$ is conservative $\forall f : E \to B$.
- with semidirect products: f^* : $Pt_B(B) \rightarrow Pt_B(E)$ is monadic $\forall f : E \rightarrow B$.
- homological: regular + pointed + protomodular
- semi-abelian: Barr-exact + pointed + protomodular + finite coproducts

Basic setting and relative ideals

Observe:

- A, B with finite limits (+ U preserves them), U conservative \Rightarrow U faithful
- since U fin. limit. pres. + conservative, A protomodular \Rightarrow B protomodular

Definition (Lapenta, M., Spada)

 $k: A \rightarrow U(B)$ is a *relative U-ideal* of an object B in **B** if

there exists a morphism $f: B \to B'$ of **B** that makes the square diagram on the right a pullback in **A**

$$\begin{array}{ccc} B & A \xrightarrow{k} U(B) \\ \exists f & \downarrow & \downarrow & \downarrow \\ B' & 0 \longrightarrow U(B') \end{array}$$

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	000000	0000	0000000

Relative ideals: examples

Unital rings: Ring
$$\xrightarrow{r}_{U}$$
 Rng

$$F(R) = R \rtimes \mathbb{Z} \quad (r, n)(r', n') = (rn' + nr' + rr', nn')$$

Unital (associative) *R*-algebras:
$$UAlg_R \xrightarrow{F} U Alg_R$$

F

$$F(A) = A \rtimes R$$
 $(a, r)(a', r') = (r'a + ra' + aa', rr')$ $r(a, r') = (ra, rr')$

Unital
$$C^*$$
-algebras: UCStar \xrightarrow{L}_{U} CStar

 $F(A) = A \oplus \mathbb{C}$ with multiplication as above, and $(a, z)^* = (a^*, \overline{z})$

Algebraic varieties...

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	000000	0000	0000000

The varietal case: basic setting for varieties

Recall from [BJ03] that a variety **V** is protomodular iff there exist $n \in \mathbb{N}$, 0-ary terms e_1, \ldots, e_n , binary terms $\alpha_1, \ldots, \alpha_n$, and (n + 1)-ary term θ such that:

$$\theta(\alpha_1(x,y),\ldots,\alpha_n(x,y),y) = x, \quad \alpha_i(x,x) = e_i \quad \text{for } i = 1,\ldots,n$$

Fact. If **V** is semi-abelian, then $e_1 = \cdots = e_n = 0$.

Vice-versa, variety is called *classically ideally determined* (*BIT-speciale* in [U72]) if equations above hold for a specified constant $0 = e_1 = \cdots = e_n$.

Definition (Lapenta, M., Spada)

Let $\mathbf{A} = (\mathbf{A}, \Sigma_{\mathbf{A}}, Z_{\mathbf{A}})$ and $\mathbf{B} = (\mathbf{B}, \Sigma_{\mathbf{B}}, Z_{\mathbf{B}})$ be algebraic varieties, s.t.

• A homological, hence semi-abelian

 \bullet signatures $\Sigma_{A}\subseteq \Sigma_{B}$ and equations $Z_{A}\subseteq Z_{B}$

The forgetful functor $U: \mathbf{B} \to \mathbf{A}$ determines a special kind of basic setting that we call *basic setting for varieties*.

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	000000	0000	0000000

0-ideals vs. U-ideals

Let V be a variety with a constant $0 \in \Sigma_V$, $\mathbf{x} = (x_1, \dots, x_m)$, $\mathbf{y} = (y_1, \dots, y_n)$.

- $t(\mathbf{x}, \mathbf{y})$ is a 0-ideal term in \mathbf{y} if $t(\mathbf{x}, \mathbf{0}) = 0$ in $\mathbf{V}, \mathbf{0} = (0, \dots, 0)$.
- $\emptyset \neq H \subseteq A$ is a 0-ideal of the algebra $A \in \mathbf{V}$, for every ideal term $t(\mathbf{x}, \mathbf{y})$

$$t(\mathbf{a},\mathbf{h})\in H,$$
 $\mathbf{a}\in A^m, \mathbf{h}\in H^n.$

Fact. In (classically) ideal determined varieties, {congruences} \leftrightarrow {0-ideals}.

Proposition (Lapenta, M., Spada)

If $U : \mathbf{B} \to \mathbf{A}$ is a basic setting for varieties, \mathbf{B} is classically ideally determined

Proposition (Lapenta, M., Spada)

Let $U : \mathbf{B} \to \mathbf{A}$ be a basic setting for varieties. A subset H of an algebra $B \in \mathbf{B}$ is a 0-ideal iff $H \subseteq U(B)$ is a U-ideal of B with respect to $U : \mathbf{B} \to \mathbf{A}$.

A number of examples arise from the varietal case. Moreover, one can consider topological models of the corresponding theories and develop other examples (if $\textbf{Set}^{\mathbb{T}}$ is semi-abelian, $\textbf{Top}^{\mathbb{T}}$ is homological).

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	0000000	0000	0000000

Augmentation ideals

Back to the basic setting
$$\mathbf{B} \xrightarrow[U]{} \mathbf{A}$$
, let $A \in \mathbf{A}$: $\exists P_A \downarrow$ s.t. $e \in \mathbf{A}$: $\exists P_A \downarrow$ s.t. $u \in U(P_A)$

Definition (Lapenta, M., Spada)

The unit η_A is an *augmentation U-ideal* if it is the kernel of $U(p_A)$.

Condition (*)

For every A in A, η_A is an augmentation U-ideal

Proposition (Lapenta, M., Spada)

Condition (*) holds iff the unit η is cartesian

Relative ideals

Comparison with Ideally Exact Cats

Application: varieties of hoops

Theorem (Lapenta, M., Spada)

Given a basic setting s.t. Condition (*) holds, with I initial in **B**, the kernel functor

$$K: \mathbf{B}/I \to \mathbf{A} \qquad f \mapsto Ker(U(f))$$

establishes an equivalence of categories.

Intro 00	Relative ideals ○○○○○○●	Comparison with Ideally Exact Cats	Application: varieties of hoops
Rei	marks		

When the functor $K \colon \mathbf{B}/I \to \mathbf{A}$ is an equivalence,

• All objects of A can be seen as (augmentation) *U*-ideals of objects of B, so that, in a sense, A sits inside B.

• Since *I* is initial in **B**,
$$\mathbf{B}/I = \mathbf{Pt}_{\mathbf{B}}(I)$$
.

This means that one is motivated to describe the pseudoinverse H of K by a semidirect product in **A** (whenever **A** has semidirect products with I):

$$H: X \mapsto \bigwedge_{I}^{X \rtimes I}$$

• In the examples considered, Ring, UAlg, UCStar, Condition (*) holds.

Comparison with Ideally Exact Categories

At CT2023, G. Janelidze presented the novel notion of *ideally exact category*, as a first step towards "a development of a new non-pointed counterpart of semi-abelian categorical algebra" ([Ja23]).

In fact this notion shows a consistent connection with our basic setting for relative U-ideal. Let us clarify by starting again from the case of unital rings.

- (F, U) basic setting
- (H, K) adjoint equivalence $\Rightarrow (F, U) \simeq (! \circ -, !^*)$

Idea: study properties of **Ring** that descend from properties of **Rng** via the monadic change of base functor along $!: \mathbb{Z} \to \{0\}$.

It turns out that the corresponding monad is essentially nullary.

Intro	Relative ideals	Comparison with Ideally Exact Cats	Applicatio
00	0000000	0000	000000

Application: varieties of hoops

Definition (Janelidze)

A monad $T = (T, \eta, \mu)$ on a cat. **X** with fin. coprod. is *essentially nullary* if, for every X in **X** the morphism $[T(!_X), \eta_X]$: $T(0) + X \to T(X)$ is a strong epi.

Examples.

- If X is a variety, any monad on X that adds constants + equations.
- If **X** is protomodular with finite coproducts, and *T* is a monad with cartesian units.

Definition (Janelidze)

A category ${\boldsymbol{\mathsf{B}}}$ is ideally exact if it satisfies any of the following conditions:

- (i) ${\boldsymbol B}$ Barr-exact protomodular with finite coprod. and $0\to 1$ regular epi
- (ii) B Barr-exact with finite coprod. and

 $\exists \ \textbf{B} \rightarrow \textbf{A}$ monadic, with A semi-abelian

Notice that one can ask the monad in (ii) to be cartesian or essentially nullary.

Ideally exact varieties

A non-trivial algebraic variety **V** is ideally exact iff it is protomodular. If θ , $\alpha_1, \ldots, \alpha_n$ and e_1, \ldots, e_n are terms that witness protomodularity, relevant examples are:

- n = 2, Heyting algebras, MV-algebras (we will discuss these later...)
- n = 1, groups (loops) with operations, unital *R*-algebras
- n = 0, in this case the characterization reduces to the existence of a unary term t satisfying the equation t(x) = y. There are two such varieties:

$$\emptyset \in V_0$$
 and $\emptyset \not\in V_1$

Both are protomodular, but only V_1 is ideally exact.

Basic setting for relative U-ideals VS Ideally Exact Categories

A relevant point is that the notion of Ideally Exact category is intrinsic:

(i) ${\boldsymbol{\mathsf{B}}}$ Barr-exact protomodular with finite coprod. and $0\to 1$ regular epi

However, concerning

(ii) **B** Barr-exact + fin. coprod. + $\exists U: \mathbf{B} \rightarrow \mathbf{A}$ monadic, with **A** semi-abelian

our *basic setting* has weaker assumptions, in that U is just (faithful and) conservative, and **A** is only homological.

In fact, it is possible to give up to Barr-exactness, while keeping monadicity.

Janelidze has shown that U comes from the change of base along $0 \rightarrow 1$ iff the unit of the adjunction is cartesian, which is the same as our Condition (*) on augmentation ideals. Then, one could replace Barr-exactness with the requirement that $0 \rightarrow 1$ be effective descent.

Or, as it has been suggested by Bourn, one could consider an efficiently regular protomodular **B** with regular epi $0 \to 1$, so that A = B/0 is homological and $\textbf{B} \to \textbf{B}/0$ is monadic.

ntro 00	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops •0000000

The category **Hoop** of hoops.

A hoop is an algebra $(A; \cdot, \rightarrow, 1)$ such that (H0) $(A; \cdot, 1)$ is a commutative monoid and the following equations hold: (H1) $x \rightarrow x = 1$ (H2) $x \cdot (x \rightarrow y) = y \cdot (y \rightarrow x)$

(H3) $(x \cdot y) \rightarrow z = x \rightarrow (y \rightarrow z)$

Facts:

- Hoops are \wedge -semilattices, with $x \wedge y := x \cdot (x \rightarrow y)$.
- Hoops are partially ordered, with $x \leq y$ iff $x \rightarrow y = 1$ iff $\exists u \text{ s.t. } x = u \cdot y$.
- Hoops are residuated structures, with $x \cdot y \leqslant z$ iff $y \leqslant x \rightarrow z$.

A bounded hoop is an algebra $(A; \cdot, \rightarrow, 1, 0)$ such that $(A; \cdot, \rightarrow, 1)$ is a hoop, and the following equation holds:

(B)
$$0 \rightarrow x = 1$$

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	000000	0000	0000000

Hoop is semi-abelian

Theorem (Lapenta, M., Spada)

Hoop is semi-abelian.

Proof. Since it is a pointed variety of algebras, it suffices to prove it's protomodular. Define terms:

$$e_1 \coloneqq 1$$
, $e_2 \coloneqq 1$, $\alpha_1(x, y) \coloneqq x \to y$,

$$\alpha_2(x,y) \coloneqq ((x \to y) \to y) \to x, \qquad \theta(x,y,z) \coloneqq (x \to z) \cdot y.$$

and apply the characterization in [BJ03].

Remark

Hoops satisfying $x \cdot x = x$ are called **idempotent**.

Idempotent hoops are (term equivalent to) Heyting A-semilattices.

HSLat is semi-abelian (HAlg is protomodular), proved by Johnstone in [Jo04].

Here we use essentially the same terms as Johnstone's: same e_i and same α_i , while his $\beta(x, y, z) := (x \rightarrow z) \land y$ coincide with our θ under idempotency, but does not work verbatim for hoops.

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	0000000	0000	0000000

Varieties of hoops

$$\begin{array}{ll} (x \rightarrow y) \lor (y \rightarrow x) = 1 & Basic \ hoops \ (\textbf{BHoop}) & (P) \\ (x \rightarrow y) \rightarrow y = (y \rightarrow x) \rightarrow x & Wajsberg \ hoops \ (\textbf{WHoop}) & (W) \\ x \cdot x = x & Idempotent \ hoops \ (\textbf{IHoop}) & (I) \\ (P) + (I) & Gödel \ hoops \ (\textbf{GHoop}) \\ (P) + (x \rightarrow z) \lor ((y \rightarrow x \cdot y) \rightarrow x) = 1 & Product \ hoops \ (\textbf{PHoop}) \\ where \ x \lor y := ((x \rightarrow y) \rightarrow y) \land ((y \rightarrow x) \rightarrow x). \end{array}$$

If the corresponding theories are expanded by adding a constant 0 and the axiom $0\to x=1,$ one obtains the "equations"

$$\label{eq:Whoop} \begin{array}{l} \mathsf{WHoop} + 0 = \mathsf{WAlg} \ (\simeq \mathsf{MVAlg}) \\ \mathsf{BHoop} + 0 = \mathsf{BAlg} \\ \mathsf{IHoop} + 0 \simeq \mathsf{HSLat} + 0 = \mathsf{HAlg} \\ \mathsf{GHoop} + 0 = \mathsf{GAlg} \\ \mathsf{PHoop} + 0 = \mathsf{PAlg} \end{array}$$

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	0000000	0000	0000000

Basic setting for varieties of hoops

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product hoops are semi-abelian.

Proposition (Lapenta, M., Spada)

The forgetful functors $U: XAlg \rightarrow XHoop$, for X = B, W, G, P determine basic settings for varieties:

$$X \operatorname{Alg} \xrightarrow{\downarrow}_{U} X \operatorname{Hoop}$$

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product algebras are protomodular.

Corollary (See [Jo04])

The variety of Heyting semilattices is semi-abelian, while the variety of Heyting algebras is protomodular.

Intro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	000000	0000	0000000

Case study: MV-algebras

An *MV-algebra* is an algebra $(A; \oplus, \neg, 0)$ such that $(A; \oplus, 0)$ is a commutative monoid and the the following equations hold

$$\neg \neg x = x, \qquad x \oplus \neg 0 = \neg 0, \quad \neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x.$$

Other (derived) operations are be defined as follows:

$$\begin{split} 1 &\coloneqq \neg 0, \qquad x \odot y \coloneqq \neg (\neg x \oplus \neg y), \qquad x \to y \coloneqq \neg x \oplus y \\ x \lor y &\coloneqq \neg (\neg x \oplus y) \oplus y \quad x \land y \coloneqq x \odot (\neg x \oplus y), \end{split}$$

Fact. $(A; \odot, \rightarrow, 1, 0)$ is a 0-bounded Wajsberg hoop (aka Wajsberg algebra). MV-algebras and W-algebras are the same, modulo term equivalence.

The functor $U: MVAlg \rightarrow WHoop$ that forgets the 0 determines a *basic* setting for varieties.

[ACD10] describes the left adjoint, which is called *MV-closure*. We revisit the construction in the present context.

Observation. For MV-algebras the notions of *kernels* and *filters* are interchangeable. Here we focus on filters, described as relative *U*-ideals.

Relative ideals

$\mathsf{MV}\text{-}\mathsf{closure}\ \mathsf{MV}\text{:}\ \mathbf{WHoop} \to \mathbf{MVAlg}$

Given a Wajsberg hoop $W = (W; \odot, \rightarrow, 1)$, recall that a binary operation \oplus_W can be canonically defined by letting $w \oplus_W w' \coloneqq (w \to (w \odot w')) \to w'$.

Define the MV-closure of \boldsymbol{W}

$$MV(W) \coloneqq (W imes \mathbf{2}; \oplus, \neg, 0)$$

where

- $\mathbf{2} = \{0, 1\}$ is the initial MV-algebra,
- $\neg(w,i) := (w,1-i), 0 := (1,0),$

 ${\ensuremath{\, \bullet }}$ the operation \oplus is defined by letting

$$(w, 1) \oplus (w', 1) \coloneqq (w \oplus_W w', 1), \qquad (w, 0) \oplus (w', 0) \coloneqq (w \odot w', 0),$$

 $(w, 0) \oplus (w', 1) = (w', 1) \oplus (w, 0) \coloneqq (w \to w', 1).$

then we obtain the split extension

$$W \xrightarrow{\eta_W} U MV(W) \xrightarrow[U(p_W)]{} U(2)$$

with $\eta_W(w) := (w, 1)$, $p_W(w, i) := i$ and $\sigma_W(i) := (1, i)$. In particular, η_W is an augmentation ideal and the unit η is cartesian.

ntro	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops
00	0000000	0000	00000000

Adding 0 to other varieties of hoops (work in progress with F. Piazza)

• The case of product algebras vs product hoops has been analized in [GU23], where they show that the forgetful functor $U: \operatorname{PAlg} \to \operatorname{PHoop}$ has a left adjoint P defined as follows for a product hoop S:

$$P(S) = B(S) \otimes_{\lor_S} C(S)$$

where

- $C(S) = \{x \rightarrow x^2 : x \in S\}$ (the cancellative elements)
- B(S) = MV(G(S)), where MV is the MV-closure and
- $G(S) = \{ (x \rightarrow x^2) \rightarrow x : x \in S \}$ (the boolean elements),
- $\vee_S \colon B(S) \times C(S) \to C(S) \coloneqq b \vee_S c = 1$ if $b \in G(S)$, $b \vee_S c = c$ otherwise,
- the "tensor product" is defined as a suitable quotient of $B(S) \times C(S)$.

The relevant fact to us is that S is a (maximal) U-ideal of P(S), with $P(S)/S \cong 2$, and the canonical inclusion $S \to P(S)$ is the unit of the adjunction, that, therefore, satisfies Condition (*).

• The other cases are under investigation...

Intro 00	Relative ideals	Comparison with Ideally Exact Cats	Application: varieties of hoops ○○○○○○●

References

- [ACD10] M. Abad, D. N. Castaño, and J. P. Díaz Varela. MV-closures of Wajsberg hoops and applications. Algebra Universalis 64 (2010).
- [BJ03] D. Bourn, G. Janelidze. Characterization of protomodular varieties of universal algebras. Theory and applications of Categories 11 No. 6 (2003).
- [GU23] V. Giustarini, S. Ugolini. Maximal Theories of Product Logic. In Fuzzy Logic and Technology, and Aggregation Operators, LNCS 14069 (2023).
- [Ja23] G. Janelidze. Ideally exact categories. arXiv:2308.06574 (2023).
- [Jo04] P. Johnstone. A note on the semiabelian variety of Heyting semilattices. Fields Institute Communications 43 (2004).
- S. Lapenta, G. Metere, L. Spada. Relative ideals in homological categories. *Submitted*, 2023.

THANK YOU FOR YOUR ATTENTION!