Dipartimento di Matematica

Milano, 22 March 2024

Relative ideals in homological categories

Giuseppe Metere*
Università degli Studi di Milano

*From an ongoing joint project with Sara Lapenta e Luca Spada

An elementary example
R unital ring, $I \subseteq R$ (bilateral) ideal.
Fact. If $I \leqslant R$ in Ring, then $I=R$.
Can we deal with ideals of unital rings categorically?
Observe: $I \leqslant R$ in Rng, and Ring is a subcategory of Rng.
More precisely, ideals in Ring are kernels in the semi-abelian category Rng
Idea. Investigate the inclusion functor

$$
U: \text { Ring } \rightarrow \text { Rng }
$$

+ determine nice behavior of ideals that can be deduced from properties of U. Observe:
- U is faithful, but not full.
- U is conservative, i.e. it reflects isomorphisms.
- U is a right adjoint, and its left adjoint F freely adds the unit element.

Some glossary

A category B with finite limits is:

- pointed: $0 \rightarrow 1$ is an isomorphism.
- regular: p.b. stable regular epis + coequalizers of effective equiv. relations
- Barr-exact: regular + all equiv. relations are effective
- protomodular: $f^{*}: \mathrm{Pt}_{\mathrm{B}}(B) \rightarrow \mathrm{Pt}_{\mathrm{B}}(E)$ is conservative $\forall f: E \rightarrow B$.
- with semidirect products: $f^{*}: \operatorname{Pt}_{\mathbf{B}}(B) \rightarrow \operatorname{Pt}_{\mathrm{B}}(E)$ is monadic $\forall f: E \rightarrow B$.
- homological: regular + pointed + protomodular
- semi-abelian: Barr-exact + pointed + protomodular + finite coproducts

Basic setting and relative ideals

Definition (Lapenta, M., Spada)

A basic setting for relative U-ideals is an adjunction
 homological and U is conservative and faithful.

Observe:

- A, B with finite limits ($+U$ preserves them), U conservative $\Rightarrow U$ faithful - since U fin. limit. pres. + conservative, \mathbf{A} protomodular $\Rightarrow \mathbf{B}$ protomodular

Definition (Lapenta, M., Spada)

$k: A \rightarrow U(B)$ is a relative U-ideal of an object B in \mathbf{B} if
there exists a morphism
$f: B \rightarrow B^{\prime}$ of B that makes the square diagram on the right a pullback in \mathbf{A}

Relative ideals: examples

Unital rings: Ring $\xrightarrow[\Delta]{\stackrel{F}{\square}}$ Rng

$$
F(R)=R \rtimes \mathbb{Z} \quad(r, n)\left(r^{\prime}, n^{\prime}\right)=\left(r n^{\prime}+n r^{\prime}+r r^{\prime}, n n^{\prime}\right)
$$

$$
F(A)=A \rtimes R \quad(a, r)\left(a^{\prime}, r^{\prime}\right)=\left(r^{\prime} a+r a^{\prime}+a a^{\prime}, r r^{\prime}\right) \quad r\left(a, r^{\prime}\right)=\left(r a, r r^{\prime}\right)
$$

Unital C^{*}-algebras: UCStar $\xrightarrow[U]{\perp}$ CStar

$$
F(A)=A \oplus \mathbb{C} \text { with multiplication as above, and }(a, z)^{*}=\left(a^{*}, \bar{z}\right)
$$

Algebraic varieties...

The varietal case: basic setting for varieties

Recall from [BJ03] that a variety \mathbf{V} is protomodular iff there exist $n \in \mathbb{N}, 0$-ary terms e_{1}, \ldots, e_{n}, binary terms $\alpha_{1}, \ldots, \alpha_{n}$, and ($n+1$)-ary term θ such that:

$$
\theta\left(\alpha_{1}(x, y), \ldots, \alpha_{n}(x, y), y\right)=x, \quad \alpha_{i}(x, x)=e_{i} \quad \text { for } i=1, \ldots, n
$$

Fact. If V is semi-abelian, then $e_{1}=\cdots=e_{n}=0$.
Vice-versa, variety is called classically ideally determined (BIT-speciale in [U72]) if equations above hold for a specified constant $0=e_{1}=\cdots=e_{n}$.

Definition (Lapenta, M., Spada)

Let $\mathbf{A}=\left(\mathbf{A}, \Sigma_{\mathbf{A}}, Z_{\mathbf{A}}\right)$ and $\mathbf{B}=\left(\mathbf{B}, \Sigma_{\mathbf{B}}, Z_{\mathbf{B}}\right)$ be algebraic varieties, s.t.

- A homological, hence semi-abelian
- signatures $\Sigma_{A} \subseteq \Sigma_{B}$ and equations $Z_{A} \subseteq Z_{B}$

The forgetful functor $U: \mathbf{B} \rightarrow \mathbf{A}$ determines a special kind of basic setting that we call basic setting for varieties.

0 -ideals vs. U-ideals

Let \mathbf{V} be a variety with a constant $0 \in \Sigma_{\mathbf{V}}, \mathbf{x}=\left(x_{1}, \ldots, x_{m}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$.

- $t(\mathbf{x}, \mathbf{y})$ is a 0 -ideal term in \mathbf{y} if $t(\mathbf{x}, \mathbf{0})=0$ in $\mathbf{V}, \mathbf{0}=(0, \ldots, 0)$.
- $\emptyset \neq H \subseteq A$ is a 0 -ideal of the algebra $A \in \mathbf{V}$, for every ideal term $t(\mathbf{x}, \mathbf{y})$

$$
t(\mathbf{a}, \mathbf{h}) \in H, \quad \mathbf{a} \in A^{m}, \mathbf{h} \in H^{n} .
$$

Fact. In (classically) ideal determined varieties, $\{$ congruences $\} \leftrightarrow\{0$-ideals $\}$.

Proposition (Lapenta, M., Spada)

If $U: \mathbf{B} \rightarrow \mathbf{A}$ is a basic setting for varieties, \mathbf{B} is classically ideally determined

Proposition (Lapenta, M., Spada)

Let $U: \mathbf{B} \rightarrow \mathbf{A}$ be a basic setting for varieties. A subset H of an algebra $B \in \mathbf{B}$ is a 0-ideal iff $H \subseteq U(B)$ is a U-ideal of B with respect to $U: \mathbf{B} \rightarrow \mathbf{A}$.

A number of examples arise from the varietal case. Moreover, one can consider topological models of the corresponding theories and develop other examples (if Set ${ }^{\mathbb{T}}$ is semi-abelian, $\mathbf{T o p}^{\mathbb{T}}$ is homological).

Augmentation ideals

Definition (Lapenta, M., Spada)

The unit η_{A} is an augmentation U-ideal if it is the kernel of $U\left(p_{A}\right)$.

Condition (*)

For every A in $\mathrm{A}, \eta_{\mathrm{A}}$ is an augmentation U-ideal

Proposition (Lapenta, M., Spada)

Condition (*) holds iff the unit η is cartesian

$$
\begin{gathered}
A^{\prime} \xrightarrow{f} \rightarrow A \longrightarrow 0
\end{gathered} \quad F(0)=I
$$

Theorem (Lapenta, M., Spada)

Given a basic setting s.t. Condition (*) holds, with I initial in B, the kernel functor

$$
K: \mathbf{B} / I \rightarrow \mathbf{A} \quad f \mapsto \operatorname{Ker}(U(f))
$$

establishes an equivalence of categories.

Proof. (Janelidze's take)
Step 1. Given $\mathcal{B} \xrightarrow[\mathcal{U}]{\stackrel{\mathcal{F}}{\perp}} \mathcal{A}, \eta=i d$ and \mathcal{U} conservative $\Rightarrow(\mathcal{F}, \mathcal{U})$ equivalence.
Step 2. Given $\mathbf{B} \xrightarrow[\Delta]{\stackrel{F}{\perp}} \mathbf{A}$, and $X \in \mathbf{A}$, define the induced adjunction

$$
\mathbf{B} / F(X) \stackrel{F^{X}}{\stackrel{\perp}{U^{x}}} \mathbf{A} / X \quad F^{X}(\alpha)=F(\alpha), \quad U^{X}(\beta)=(\eta x)^{*}(U(\beta))
$$

Step 3. Specialize to $\mathbf{B} / I=\mathbf{B} / F(0) \underset{\substack{U^{0}=k e r}}{\frac{F^{0}}{\perp}} \mathbf{A} / 0=\mathbf{A}$ and apply Step 1 .

Remarks

When the functor $K: \mathbf{B} / I \rightarrow \mathbf{A}$ is an equivalence,

- All objects of \mathbf{A} can be seen as (augmentation) U-ideals of objects of \mathbf{B}, so that, in a sense, \mathbf{A} sits inside \mathbf{B}.
- Since I is initial in $\mathrm{B}, \mathrm{B} / I=\mathrm{Pt}_{\mathrm{B}}(I)$.

This means that one is motivated to describe the pseudoinverse H of K by a semidirect product in \mathbf{A} (whenever \mathbf{A} has semidirect products with I):

- In the examples considered, Ring, UAIg, UCStar, Condition (*) holds.

Comparison with Ideally Exact Categories

At CT2023, G. Janelidze presented the novel notion of ideally exact category, as a first step towards "a development of a new non-pointed counterpart of semi-abelian categorical algebra" ([Ja23]).
In fact this notion shows a consistent connection with our basic setting for relative U-ideal. Let us clarify by starting again from the case of unital rings.

- (F, U) basic setting
- (H, K) adjoint equivalence

$$
\Rightarrow(F, U) \simeq\left(!\circ-,!^{*}\right)
$$

Idea: study properties of Ring that descend from properties of Rng via the monadic change of base functor along !: $\mathbb{Z} \rightarrow\{0\}$.

It turns out that the corresponding monad is essentially nullary.

Definition (Janelidze)

A monad $T=(T, \eta, \mu)$ on a cat. \mathbf{X} with fin. coprod. is essentially nullary if, for every X in X the morphism $\left[T(!x), \eta_{X}\right]: T(0)+X \rightarrow T(X)$ is a strong epi.

Examples.

- If \mathbf{X} is a variety, any monad on \mathbf{X} that adds constants + equations.
- If \mathbf{X} is protomodular with finite coproducts, and T is a monad with cartesian units.

Definition (Janelidze)

A category \mathbf{B} is ideally exact if it satisfies any of the following conditions:
(i) B Barr-exact protomodular with finite coprod. and $0 \rightarrow 1$ regular epi
(ii) B Barr-exact with finite coprod. and
$\exists \mathbf{B} \rightarrow \mathbf{A}$ monadic, with \mathbf{A} semi-abelian

Notice that one can ask the monad in (ii) to be cartesian or essentially nullary.

Ideally exact varieties

A non-trivial algebraic variety \mathbf{V} is ideally exact iff it is protomodular. If $\theta, \alpha_{1}, \ldots, \alpha_{n}$ and e_{1}, \ldots, e_{n} are terms that witness protomodularity, relevant examples are:

- $n=2$, Heyting algebras, MV-algebras (we will discuss these later...)
- $n=1$, groups (loops) with operations, unital R-algebras
- $n=0$, in this case the characterization reduces to the existence of a unary term t satisfying the equation $t(x)=y$. There are two such varieties:

$$
\emptyset \in \mathbf{V}_{0} \quad \text { and } \quad \emptyset \notin \mathbf{V}_{1}
$$

Both are protomodular, but only \mathbf{V}_{1} is ideally exact.

Basic setting for relative U-ideals VS Ideally Exact Categories

A relevant point is that the notion of Ideally Exact category is intrinsic:
(i) B Barr-exact protomodular with finite coprod. and $0 \rightarrow 1$ regular epi

However, concerning
(ii) B Barr-exact + fin. coprod. $+\exists U: \mathbf{B} \rightarrow \mathbf{A}$ monadic, with \mathbf{A} semi-abelian our basic setting has weaker assumptions, in that U is just (faithful and) conservative, and \mathbf{A} is only homological.
In fact, it is possible to give up to Barr-exactness, while keeping monadicity. Janelidze has shown that U comes from the change of base along $0 \rightarrow 1$ iff the unit of the adjunction is cartesian, which is the same as our Condition (*) on augmentation ideals. Then, one could replace Barr-exactness with the requirement that $0 \rightarrow 1$ be effective descent.
Or, as it has been suggested by Bourn, one could consider an efficiently regular protomodular \mathbf{B} with regular epi $0 \rightarrow 1$, so that $\mathbf{A}=\mathbf{B} / 0$ is homological and $B \rightarrow B / 0$ is monadic.

The category Hoop of hoops.

A hoop is an algebra $(A ; \cdot, \rightarrow, 1)$ such that
(H0) $(A ; \cdot, 1)$ is a commutative monoid
and the following equations hold:
(H1) $x \rightarrow x=1$
(H2) $x \cdot(x \rightarrow y)=y \cdot(y \rightarrow x)$
(H3) $(x \cdot y) \rightarrow z=x \rightarrow(y \rightarrow z)$

Facts:

- Hoops are \wedge-semilattices, with $x \wedge y:=x \cdot(x \rightarrow y)$.
- Hoops are partially ordered, with $x \leqslant y$ iff $x \rightarrow y=1$ iff $\exists u$ s.t. $x=u \cdot y$.
- Hoops are residuated structures, with $x \cdot y \leqslant z$ iff $y \leqslant x \rightarrow z$.

A bounded hoop is an algebra $(A ; \cdot, \rightarrow, 1,0)$ such that $\left(A_{;} \cdot, \rightarrow, 1\right)$ is a hoop, and the following equation holds:
(B) $0 \rightarrow x=1$

Hoop is semi-abelian

Theorem (Lapenta, M., Spada)

Hoop is semi-abelian.
Proof. Since it is a pointed variety of algebras, it suffices to prove it's protomodular. Define terms:

$$
\begin{aligned}
e_{1} & :=1, \quad e_{2}:=1, \quad \alpha_{1}(x, y):=x \rightarrow y \\
\alpha_{2}(x, y) & :=((x \rightarrow y) \rightarrow y) \rightarrow x, \quad \theta(x, y, z):=(x \rightarrow z) \cdot y
\end{aligned}
$$

and apply the characterization in [BJ03].

Remark

Hoops satisfying $x \cdot x=x$ are called idempotent.
Idempotent hoops are (term equivalent to) Heyting \wedge-semilattices.
HSLat is semi-abelian (HAlg is protomodular), proved by Johnstone in [Jo04]. Here we use essentially the same terms as Johnstone's: same e_{i} and same α_{i}, while his $\beta(x, y, z):=(x \rightarrow z) \wedge y$ coincide with our θ under idempotency, but does not work verbatim for hoops.

Varieties of hoops

$$
\begin{array}{lr}
(x \rightarrow y) \vee(y \rightarrow x)=1 & \text { Basic hoops (BHoop) } \\
(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x & \text { Wajsberg hoops (WHoop) } \\
x \cdot x=x & \text { Idempotent hoops (IHoop) } \\
(\mathrm{P})+(\mathrm{I}) & \text { Gödel hoops (GHoop) } \\
(\mathrm{P})+(x \rightarrow z) \vee((y \rightarrow x \cdot y) \rightarrow x)=1 & \text { Product hoops (PHoop) } \\
\text { where } x \vee y:=((x \rightarrow y) \rightarrow y) \wedge((y \rightarrow x) \rightarrow x) .
\end{array}
$$

If the corresponding theories are expanded by adding a constant 0 and the axiom $0 \rightarrow x=1$, one obtains the "equations"

$$
\begin{aligned}
\text { WHoop }+0 & =\text { WAlg }(\simeq \text { MVAlg }) \\
\text { BHoop }+0 & =\text { BAlg } \\
\text { IHoop }+0 \simeq \text { HSLat }+0 & =\text { HAlg } \\
\text { GHoop }+0 & =\text { GAlg } \\
\text { PHoop }+0 & =\text { PAlg }
\end{aligned}
$$

Basic setting for varieties of hoops

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product hoops are semi-abelian.

Proposition (Lapenta, M., Spada)

The forgetful functors $U: X \mathbf{A l g} \rightarrow X$ Hoop, for $X=\mathbf{B}, \mathbf{W}, \mathbf{G}, \mathbf{P}$ determine basic settings for varieties:

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product algebras are protomodular.

Corollary (See [Jo04])

The variety of Heyting semilattices is semi-abelian, while the variety of Heyting algebras is protomodular.

Case study: MV-algebras

An $M V$-algebra is an algebra $(A ; \oplus, \neg, 0)$ such that $(A ; \oplus, 0)$ is a commutative monoid and the the following equations hold

$$
\neg \neg x=x, \quad x \oplus \neg 0=\neg 0, \quad \neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x
$$

Other (derived) operations are be defined as follows:

$$
\begin{aligned}
& 1:=\neg 0, \quad x \odot y:=\neg(\neg x \oplus \neg y), \quad x \rightarrow y:=\neg x \oplus y \\
& x \vee y:=\neg(\neg x \oplus y) \oplus y \quad x \wedge y:=x \odot(\neg x \oplus y),
\end{aligned}
$$

Fact. ($A ; \odot, \rightarrow, 1,0$) is a 0 -bounded Wajsberg hoop (aka Wajsberg algebra). MV-algebras and W -algebras are the same, modulo term equivalence.
The functor $U:$ MVAlg \rightarrow WHoop that forgets the 0 determines a basic setting for varieties.
[ACD10] describes the left adjoint, which is called MV-closure. We revisit the construction in the present context.
Observation. For MV-algebras the notions of kernels and filters are interchangeable. Here we focus on filters, described as relative U-ideals.

MV-closure MV: WHoop \rightarrow MVAIg

Given a Wajsberg hoop $W=(W ; \odot, \rightarrow, 1)$, recall that a binary operation $\oplus W$ can be canonically defined by letting $w \oplus w w^{\prime}:=\left(w \rightarrow\left(w \odot w^{\prime}\right)\right) \rightarrow w^{\prime}$.

Define the MV-closure of W

$$
M V(W):=(W \times \mathbf{2} ; \oplus, \neg, 0)
$$

where

- $\mathbf{2}=\{0,1\}$ is the initial MV-algebra,
- $\neg(w, i):=(w, 1-i), 0:=(1,0)$,
- the operation \oplus is defined by letting

$$
\begin{aligned}
& (w, 1) \oplus\left(w^{\prime}, 1\right):=\left(w \oplus w w^{\prime}, 1\right), \quad(w, 0) \oplus\left(w^{\prime}, 0\right):=\left(w \odot w^{\prime}, 0\right) \\
& (w, 0) \oplus\left(w^{\prime}, 1\right)=\left(w^{\prime}, 1\right) \oplus(w, 0):=\left(w \rightarrow w^{\prime}, 1\right)
\end{aligned}
$$

then we obtain the split extension
with $\eta_{w}(w):=(w, 1), p_{w}(w, i):=i$ and $\sigma_{w}(i):=(1, i)$. In particular, η_{w} is an augmentation ideal and the unit η is cartesian.

Adding 0 to other varieties of hoops (work in progress with F. Piazza)

- The case of product algebras vs product hoops has been analized in [GU23], where they show that the forgetful functor U : PAlg \rightarrow PHoop has a left adjoint P defined as follows for a product hoop S :

$$
P(S)=B(S) \otimes v_{S} C(S)
$$

where

- $C(S)=\left\{x \rightarrow x^{2}: x \in S\right\}$ (the cancellative elements)
- $B(S)=M V(G(S))$, where $M V$ is the MV-closure and $G(S)=\left\{\left(x \rightarrow x^{2}\right) \rightarrow x: x \in S\right\}$ (the boolean elements),
- $\vee_{S}: B(S) \times C(S) \rightarrow C(S):=b \vee_{S} c=1$ if $b \in G(S), b \vee_{S} c=c$ otherwise,
- the "tensor product" is defined as a suitable quotient of $B(S) \times C(S)$.

The relevant fact to us is that S is a (maximal) U-ideal of $P(S)$, with $P(S) / S \cong 2$, and the canonical inclusion $S \rightarrow P(S)$ is the unit of the adjunction, that, therefore, satisfies Condition ($*$).

- The other cases are under investigation...

References

- [ACD10] M. Abad, D. N. Castaño, and J. P. Díaz Varela. MV-closures of Wajsberg hoops and applications. Algebra Universalis 64 (2010).
- [BJ03] D. Bourn, G. Janelidze. Characterization of protomodular varieties of universal algebras. Theory and applications of Categories 11 No. 6 (2003).
- [GU23] V. Giustarini, S. Ugolini. Maximal Theories of Product Logic. In Fuzzy Logic and Technology, and Aggregation Operators, LNCS 14069 (2023).
- [Ja23] G. Janelidze. Ideally exact categories. arXiv:2308.06574 (2023).
- [Jo04] P. Johnstone. A note on the semiabelian variety of Heyting semilattices. Fields Institute Communications 43 (2004).
- S. Lapenta, G. Metere, L. Spada. Relative ideals in homological categories. Submitted, 2023.

THANK YOU FOR YOUR ATTENTION!

