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An elementary example

R unital ring, I ⊆ R (bilateral) ideal.

Fact. If I 󰃑 R in Ring, then I = R.

Can we deal with ideals of unital rings categorically?

Observe: I 󰃑 R in Rng, and Ring is a subcategory of Rng.

More precisely, ideals in Ring are kernels in the semi-abelian category Rng

Idea. Investigate the inclusion functor

U : Ring → Rng

+ determine nice behavior of ideals that can be deduced from properties of U.

Observe:

U is faithful, but not full.

U is conservative, i.e. it reflects isomorphisms.

U is a right adjoint, and its left adjoint F freely adds the unit element.
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Some glossary

A category B with finite limits is:

pointed: 0 → 1 is an isomorphism.

regular: p.b. stable regular epis + coequalizers of effective equiv. relations

Barr-exact: regular + all equiv. relations are effective

protomodular: f ∗ : PtB(B) → PtB(E) is conservative ∀f : E → B.

with semidirect products: f ∗ : PtB(B) → PtB(E) is monadic ∀f : E → B.

homological: regular + pointed + protomodular

semi-abelian: Barr-exact + pointed + protomodular + finite coproducts
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Basic setting and relative ideals

Definition (Lapenta, M., Spada)

A basic setting for relative U-ideals is an adjunction B
U
󰈣󰈣 A

F

⊥󰉱󰉱
where A is

homological and U is conservative and faithful.

Observe:
A, B with finite limits (+ U preserves them), U conservative ⇒ U faithful
since U fin. limit. pres. + conservative, A protomodular ⇒ B protomodular

Definition (Lapenta, M., Spada)

k : A → U(B) is a relative U-ideal of an object B in B if

there exists a morphism
f : B → B ′ of B that makes the
square diagram on the right a
pullback in A

B

∃ f s.t.
󰈃󰈃

A
┘

k 󰈣󰈣

󰈃󰈃

U(B)

U(f )

󰈃󰈃
B ′ 0 󰈣󰈣 U(B ′)
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Relative ideals: examples

Unital rings: Ring
U
󰈣󰈣 Rng

F

⊥󰉭󰉭

F (R) = R ⋊ Z (r , n)(r ′, n′) = (rn′ + nr ′ + rr ′, nn′)

Unital (associative) R-algebras: UAlgR U
󰈣󰈣 AlgR

F

⊥󰉬󰉬

F (A) = A⋊ R (a, r)(a′, r ′) = (r ′a+ ra′ + aa′, rr ′) r(a, r ′) = (ra, rr ′)

Unital C∗-algebras: UCStar
U
󰈣󰈣 CStar

F

⊥󰉬󰉬

F (A) = A⊕ C with multiplication as above, and (a, z)∗ = (a∗, z)

Algebraic varieties...
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The varietal case: basic setting for varieties

Recall from [BJ03] that a variety V is protomodular iff there exist n ∈ N, 0-ary
terms e1, . . . , en, binary terms α1, . . . ,αn, and (n + 1)-ary term θ such that:

θ(α1(x , y), . . . ,αn(x , y), y) = x , αi (x , x) = ei for i = 1, . . . , n

Fact. If V is semi-abelian, then e1 = · · · = en = 0.

Vice-versa, variety is called classically ideally determined (BIT-speciale in
[U72]) if equations above hold for a specified constant 0 = e1 = · · · = en.

Definition (Lapenta, M., Spada)

Let A = (A,ΣA,ZA) and B = (B,ΣB,ZB) be algebraic varieties, s.t.

A homological, hence semi-abelian

signatures ΣA ⊆ ΣB and equations ZA ⊆ ZB

The forgetful functor U : B → A determines a special kind of basic setting that
we call basic setting for varieties.
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0-ideals vs. U-ideals

Let V be a variety with a constant 0 ∈ ΣV, x = (x1, . . . , xm), y = (y1, . . . , yn).

t(x, y) is a 0-ideal term in y if t(x, 0) = 0 in V, 0 = (0, . . . , 0) .

∅ ∕= H ⊆ A is a 0-ideal of the algebra A ∈ V, for every ideal term t(x, y)

t(a, h) ∈ H, a ∈ Am, h ∈ Hn.

Fact. In (classically) ideal determined varieties, {congruences} ↔ {0-ideals}.

Proposition (Lapenta, M., Spada)

If U : B → A is a basic setting for varieties, B is classically ideally determined

Proposition (Lapenta, M., Spada)

Let U : B → A be a basic setting for varieties. A subset H of an algebra B ∈ B
is a 0-ideal iff H ⊆ U(B) is a U-ideal of B with respect to U : B → A.

A number of examples arise from the varietal case.
Moreover, one can consider topological models of the corresponding theories
and develop other examples (if SetT is semi-abelian, TopT is homological).
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Augmentation ideals

Back to the basic setting B
U
󰈣󰈣 A

F

⊥󰉬󰉬 , let A ∈ A:

F (A)

∃!pA s.t.
󰈃󰈃

A
ηA 󰈣󰈣

0 󰈓󰈓❄
❄❄

❄❄
UF (A)

U(pA)󰈃󰈃
I U(I )

Definition (Lapenta, M., Spada)

The unit ηA is an augmentation U-ideal if it is the kernel of U(pA).

Condition (∗)
For every A in A, ηA is an augmentation U-ideal

Proposition (Lapenta, M., Spada)

Condition (∗) holds iff the unit η is cartesian

Idea of the proof:

A′ f 󰈣󰈣

ηA′ 󰈃󰈃

┘
A 󰈣󰈣

ηA
󰈃󰈃

┘
0
η0
󰈃󰈃

UF (A′)
UF (f )

󰈣󰈣 UF (A)
UF (!A)

󰈣󰈣 UF (0)

F (0) = I

F (!A) = pA
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Theorem (Lapenta, M., Spada)

Given a basic setting s.t. Condition (∗) holds, with I initial in B, the kernel
functor

K : B/I → A f 󰀁→ Ker(U(f ))

establishes an equivalence of categories.

Proof. (Janelidze’s take)

Step 1. Given B
U
󰈣󰈣 A

F
⊥󰉯󰉯 , η = id and U conservative ⇒ (F ,U) equivalence.

Step 2. Given B
U
󰈣󰈣 A

F

⊥󰉯󰉯 , and X ∈ A, define the induced adjunction

B/F (X )
UX

󰈣󰈣 A/X

FX

⊥
󰉩󰉩

FX (α) = F (α), UX (β) = (ηX )
∗(U(β))

Step 3. Specialize to B/I = B/F (0)
U0=ker

󰈣󰈣 A/0 = A

F0

⊥
󰉧󰉧

and apply Step 1.
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Remarks

When the functor K : B/I → A is an equivalence,

All objects of A can be seen as (augmentation) U-ideals of objects of B,
so that, in a sense, A sits inside B.

Since I is initial in B, B/I = PtB(I ).
This means that one is motivated to describe the pseudoinverse H of K by
a semidirect product in A (whenever A has semidirect products with I ):

H : X 󰀁→
X ⋊ I

󰈃󰈃
I

󰉃󰉃

In the examples considered, Ring, UAlg, UCStar, Condition (∗) holds.
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Comparison with Ideally Exact Categories

At CT2023, G. Janelidze presented the novel notion of ideally exact category,
as a first step towards “a development of a new non-pointed counterpart of
semi-abelian categorical algebra” ([Ja23]).

In fact this notion shows a consistent connection with our basic setting for
relative U-ideal. Let us clarify by starting again from the case of unital rings.

Ring
U

󰈣󰈣 Rng

F

⊥󰉩󰉩

H

󰈍󰈍
Ring/{0}

!∗
󰈣󰈣 Ring/Z

!◦−

⊥
󰉨󰉨

⊣ K

󰉃󰉃 (F ,U) basic setting

(H,K) adjoint equivalence

⇒ (F ,U) ≃ (! ◦ −, !∗)

Idea: study properties of Ring that descend from properties of Rng via the
monadic change of base functor along ! : Z → {0}.

It turns out that the corresponding monad is essentially nullary.
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Definition (Janelidze)

A monad T = (T , η, µ) on a cat. X with fin. coprod. is essentially nullary if, for
every X in X the morphism [T (!X ), ηX ] : T (0) + X → T (X ) is a strong epi.

Examples.
If X is a variety, any monad on X that adds constants + equations.

If X is protomodular with finite coproducts, and T is a monad with
cartesian units.

Definition (Janelidze)

A category B is ideally exact if it satisfies any of the following conditions:

(i) B Barr-exact protomodular with finite coprod. and 0 → 1 regular epi

(ii) B Barr-exact with finite coprod. and

∃ B → A monadic, with A semi-abelian

Notice that one can ask the monad in (ii) to be cartesian or essentially nullary.
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Ideally exact varieties

A non-trivial algebraic variety V is ideally exact iff it is protomodular.
If θ, α1, . . . ,αn and e1, . . . , en are terms that witness protomodularity, relevant
examples are:

n = 2, Heyting algebras, MV-algebras (we will discuss these later...)

n = 1, groups (loops) with operations, unital R-algebras

n = 0, in this case the characterization reduces to the existence of a unary
term t satisfying the equation t(x) = y . There are two such varieties:

∅ ∈ V0 and ∅ ∕∈ V1

Both are protomodular, but only V1 is ideally exact.
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Basic setting for relative U-ideals VS Ideally Exact Categories

A relevant point is that the notion of Ideally Exact category is intrinsic:

(i) B Barr-exact protomodular with finite coprod. and 0 → 1 regular epi

However, concerning

(ii) B Barr-exact + fin. coprod. + ∃ U : B → A monadic, with A semi-abelian

our basic setting has weaker assumptions, in that U is just (faithful and)
conservative, and A is only homological.

In fact, it is possible to give up to Barr-exactness, while keeping monadicity.

Janelidze has shown that U comes from the change of base along 0 → 1 iff the
unit of the adjunction is cartesian, which is the same as our Condition (∗) on
augmentation ideals. Then, one could replace Barr-exactness with the
requirement that 0 → 1 be effective descent.

Or, as it has been suggested by Bourn, one could consider an efficiently regular
protomodular B with regular epi 0 → 1, so that A = B/0 is homological and
B → B/0 is monadic.
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The category Hoop of hoops.

A hoop is an algebra (A; ·,→, 1) such that

(H0) (A; ·, 1) is a commutative monoid

and the following equations hold:

(H1) x → x = 1

(H2) x · (x → y) = y · (y → x)

(H3) (x · y) → z = x → (y → z)

Facts:
Hoops are ∧-semilattices, with x ∧ y := x · (x → y) .

Hoops are partially ordered, with x 󰃑 y iff x → y = 1 iff ∃ u s.t. x = u · y .

Hoops are residuated structures, with x · y 󰃑 z iff y 󰃑 x → z .

A bounded hoop is an algebra (A; ·,→, 1, 0) such that (A; ·,→, 1) is a hoop,
and the following equation holds:

(B) 0 → x = 1
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Hoop is semi-abelian

Theorem (Lapenta, M., Spada)

Hoop is semi-abelian.

Proof. Since it is a pointed variety of algebras, it suffices to prove it’s
protomodular. Define terms:

e1 := 1 , e2 := 1 , α1(x , y) := x → y ,

α2(x , y) := ((x → y) → y) → x , θ(x , y , z) := (x → z) · y .

and apply the characterization in [BJ03].

Remark

Hoops satisfying x · x = x are called idempotent.
Idempotent hoops are (term equivalent to) Heyting ∧-semilattices.

HSLat is semi-abelian (HAlg is protomodular), proved by Johnstone in [Jo04].

Here we use essentially the same terms as Johnstone’s: same ei and same αi ,
while his β(x , y , z) := (x → z) ∧ y coincide with our θ under idempotency, but
does not work verbatim for hoops.
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Varieties of hoops

(x → y) ∨ (y → x) = 1 Basic hoops (BHoop) (P)

(x → y) → y = (y → x) → x Wajsberg hoops (WHoop) (W)

x · x = x Idempotent hoops (IHoop) (I)

(P) + (I) Gödel hoops (GHoop)
(P) + (x → z) ∨ ((y → x · y) → x) = 1 Product hoops (PHoop)

where x ∨ y := ((x → y) → y) ∧ ((y → x) → x) .

If the corresponding theories are expanded by adding a constant 0 and the
axiom 0 → x = 1, one obtains the "equations"

WHoop + 0 = WAlg (≃ MVAlg)
BHoop + 0 = BAlg

IHoop + 0 ≃ HSLat + 0 = HAlg
GHoop + 0 = GAlg
PHoop + 0 = PAlg
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Basic setting for varieties of hoops

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product hoops are semi-abelian.

Proposition (Lapenta, M., Spada)

The forgetful functors U : XAlg → XHoop, for X = B,W,G,P determine basic
settings for varieties:

XAlg
U
󰈣󰈣 XHoop

F

⊥󰉬󰉬

Corollary (Lapenta, M., Spada)

The varieties of Basic, Wajsberg, Gödel and Product algebras are protomodular.

Corollary (See [Jo04])

The variety of Heyting semilattices is semi-abelian, while the variety of Heyting
algebras is protomodular.
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Case study: MV-algebras

An MV-algebra is an algebra (A;⊕,¬, 0) such that (A;⊕, 0) is a commutative
monoid and the the following equations hold

¬¬x = x , x ⊕ ¬0 = ¬0 , ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

Other (derived) operations are be defined as follows:

1 := ¬0 , x ⊙ y := ¬(¬x ⊕ ¬y) , x → y := ¬x ⊕ y

x ∨ y := ¬(¬x ⊕ y)⊕ y x ∧ y := x ⊙ (¬x ⊕ y),

Fact. (A;⊙,→, 1, 0) is a 0-bounded Wajsberg hoop (aka Wajsberg algebra).
MV-algebras and W-algebras are the same, modulo term equivalence.

The functor U : MVAlg → WHoop that forgets the 0 determines a basic
setting for varieties.

[ACD10] describes the left adjoint, which is called MV-closure. We revisit the
construction in the present context.

Observation. For MV-algebras the notions of kernels and filters are
interchangeable. Here we focus on filters, described as relative U-ideals.
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MV-closure MV : WHoop → MVAlg

Given a Wajsberg hoop W = (W ;⊙,→, 1), recall that a binary operation ⊕W

can be canonically defined by letting w ⊕W w ′ := (w → (w ⊙ w ′)) → w ′.

Define the MV-closure of W

MV (W ) := (W × 2;⊕,¬, 0)

where
2 = {0, 1} is the initial MV-algebra,
¬(w , i) := (w , 1 − i), 0 := (1, 0),
the operation ⊕ is defined by letting

(w , 1)⊕ (w ′, 1) := (w ⊕W w ′, 1) , (w , 0)⊕ (w ′, 0) := (w ⊙ w ′, 0) ,

(w , 0)⊕ (w ′, 1) = (w ′, 1)⊕ (w , 0) := (w → w ′, 1) .

then we obtain the split extension

W
ηW 󰈣󰈣 U MV (W )

U(pW ) 󰈣󰈣 U(2)
U(σW )
󰉣󰉣

with ηW (w) := (w , 1), pW (w , i) := i and σW (i) := (1, i). In particular, ηW is
an augmentation ideal and the unit η is cartesian.
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Adding 0 to other varieties of hoops (work in progress with F. Piazza)

The case of product algebras vs product hoops has been analized in
[GU23], where they show that the forgetful functor U : PAlg → PHoop
has a left adjoint P defined as follows for a product hoop S :

P(S) = B(S)⊗∨S C(S)

where
C(S) = {x → x2 : x ∈ S} (the cancellative elements)
B(S) = MV (G(S)), where MV is the MV-closure and
G(S) = {(x → x2) → x : x ∈ S} (the boolean elements),
∨S : B(S)×C(S) → C(S) := b∨S c = 1 if b ∈ G(S), b∨S c = c otherwise,
the "tensor product" is defined as a suitable quotient of B(S)× C(S).

The relevant fact to us is that S is a (maximal) U-ideal of P(S), with
P(S)/S ∼= 2, and the canonical inclusion S → P(S) is the unit of the
adjunction, that, therefore, satisfies Condition (∗).
The other cases are under investigation...
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