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Abstract

In this paper we show that the two apparently different notions of
weak inverses for a strict n-category due to R. Street and to Kapranov
and Voevodsky do coincide1.

1 Introduction

Topological templates of higher categorical structures suggest to consider the
definition of invertible cells since the beginning of the developing of the theory.
This is straightforward when considering strict inverses for strict n-categories,
but in a weak n-categorical setting, we need week–inverses to be defined.
A gentle approach to this issue is considering a semi–strict intermediate case:
namely that of weak inverses for strict n-categories. The idea is that the general
case would reduce to this when specialized to strict n-categories.
In literature there are (at least) two such.
The first goes back to the classics on this subject: Streets’ paper on The algebra
of oriented simplexes [Str87]. Here, a (weakly) invertible k-cell is one that has a
weak-inverse with respect to (k−1)-composition. Specializing this definition for
0-inverses, one can say that an arrow f : x → y is weakly invertible whenever
there is an arrow g : y → x, such that f ◦ g is equivalent to 1x and g ◦ f
is equivalent to 1y. The first assertion means that there is an invertible 2-
cell fg ⇒ 1x; hence there is an inverse 2-cell going in the opposite direction,
similarly for the second assertion. Hence by induction, in a strict n-category
we have to produce (at least) 2n witnesses in order to say that an arrow is
weakly invertible. Let us notice that all those witnesses are required to obey no
coherence law at all.
A second approach is supplied by M. M. Kapranov and V. A. Voevodsky (CT
meeting in Bangor, 1989, published in [KV91]MR1130401) where a notion of
invertible cell is closely connected with that of equivalence of n-categories. Their
definition in dimension n is based upon the idea that a n-groupoid is a strict
n-category where all equations of the form ax = b (and xa = b) admit a weak
solution. Here a, x and b are cells of any (possibly different) dimension and
the multiplication is any composition. Of course composites are meant to be
composeable.
Kapranov and Voevodsky conjectured that the their notion of inverse cell implies
that of Street, but the latter do not imply the former. As an argument to this

1Financial support by INDAM ????, FNRS grant ???? and Dote Ricercatore (Regione
Lombardia) are gratefully acknowledged.

1



conjecture, they show how their definition implies the existence for any invertible
cell of a coherent system of quasi inverses, i.e. a higher dimensional analog of
triangular identities, while “. . . there is no way to construct such a system from
Street’s definition” [KV91].
We disprove this conjecture by showing that the two notions are indeed equiv-
alent. The proof is obtained by double induction, over the dimension and the
level of localization, and uses the idea that a n-functor is an equivalence when
it is h-surjective at any level of localization, including the top degenerate one,
that of the nth localization where surjective (on equations) means injective on
hom-sets.
The paper is organized as follows: next section is devoted to present the sesquicat-
egory n-Cat of strict n-categories, strict n-functors and weak n-transformations;
in the following one we give a notion of weak equivalence of n-categories. The
precise relation between the notion of weakly invertible and Street–invertible
cells is summarized in Theorem 4.2, which is stated in section four, where the
2-dimensional case is studied in detail. Finally the last section occupies almost
half of the paper with the proof of the main result.
The results contained in the present work have been presented at the Inter-
national Category Theory Conference in Calais, June 2008. A similar result
has been announced by Y. Lafont at HoCat 2008 Conference in Barcelona (see
[LMW07]).

2 Preliminaries

In this section we recall first a standard construction of the category n-Cat, of
(small) strict–n-categories and their morphisms, inductively enriched over the
category (n − 1)-Cat (see for instance [Str87]). A new perspective is given by
considering the richer structure of sesqui–category of n-Cat, necessary in order
to take into account the 2-morphisms, namely lax–n-transformations, and their
compositions. Details can be found in [Met08].

Sesqui–categories where defined by Street [Str96]. The term sesqui comes from
the latin semis-que, that means (one and) a half. Hence a sesqui-category is
something in-between a category and a 2-category. More precisely, a sesqui-
category C is a category bCc with a lifting of the hom-functor to Cat, such that
the following diagram of categories and functors commutes:

Cat

obj

��
bCcop × bCc

C(−,−)

55jjjjjjjjjjjjjjj

bCc(−,−)
// Set

Objects and morphisms of bCc are also objects and 1-cells of C, while morphisms
of C(A,B)’s (with A and B running in obj(bCc)) are the 2-cells of C.

2.1 The category n-Cat

For n = 0, 1 we can safely consider the usual category of small sets and categories
respectively. Hence let us suppose n > 1.
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A (strict) n-category C consists of a set of objects C0, and for every pair c0, c′0 ∈
C0, a (n − 1)-category C1(c0, c′0). Structure is given by morphisms of (n − 1)-
categories:

I
u0(c0) // C1(c0, c0) , C1(c0, c′0)× C1(c′0, c

′′
0)
◦0
c0,c
′
0,c
′′
0 // C1(c0, c′′0) ,

called resp. 0-units and 0-compositions, with c0, c
′
0, c
′′
0 any triple of objects C0.

Axioms are the usual for strict unit and strict associativity.

Notation: Cell dimension will be often recalled as subscript, as ck is a k-cell
in the n-category C. Moreover, if

ck : ck−1 → c′k−1 : ck−2 → c′k−2 : · · · → · · · : c1 → c′1 : c0 → c′0,

ck can be considered as an object of the (n− k)-category[
· · ·
[
[C1(c0, c′0)]1(c1, c′1)

]
1
· · ·
]

1
(ck−1, c

′
k−1).

In order to avoid this quite uncomfortable notation, the latter will be renamed
more simply Ck(ck−1, c

′
k−1), while with Ck we will mean the disjoint union of all

such. Finally, 0-subscript of the underlying set of an n-category, will be often
omitted.

A morphism of n-categories is a (strict) n-functor F : C → D. It consists of
set-theoretical map F0 : C0 → D0 together with morphisms of (n−1)-categories

F
c0,c
′
0

1 : C1(c0, c′0) // D1(F0c0, F0c
′
0)

for any pair of objects c0, c′0 of C0, such that usual (strict) functoriality axioms
are satisfied. Let us notice that subscripts and superscripts will be often omitted,
when this does not cause confusion.
Routine calculations shows that these data organizes in a category.

2.2 The sesqui–categorical structure of n-Cat

The category Set can be easily endowed with a trivial sesqui–categorical struc-
ture. For n = 1, the category Cat is a 2-category, with natural transformations
as 2-cells. Hence it has an underlying sesqui–category.
Again we can suppose n > 1. For given n-functors F,G : C → D, a lax n-
transformation α : F → G consists of a pair (α0, α1) where the first is a map
α0 : C0 → D1 such that α0(c0) = αc0 : Fc0 → Gc0, and α1 = {αc0,c

′
0

1 }c0,c′0∈C0 is
a collection of 2-morphisms of (n− 1)-categories

C1(c0, c′0)
F
c0,c
′
0

1

yyttttttttt
G
c0,c
′
0

1

%%KKKKKKKKK

D1(F0c0, F0c
′
0)

−◦0α0c
′
0 %%JJJJJJJJJ

D1(G0c0, G0c
′
0)

α0c0◦0−yysssssssss

D1(F0c0, G0c
′
0)

α
c0,c
′
0

1ks
(1)
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satisfying suitable functoriality axioms [Met08]. In the sequel we will refer
to diagrams like (1) as to naturality diagrams for the 2-morphism α. A n-
transformation is called strict when all α−,−1 are identities.
It is possible to define in a natural way a vertical composition of 2-morphisms,
and left and right compositions with a 1-morphisms (whiskering). It is not
difficult to show that these data define a sesqui–category [Met08].

3 Equivalences of n-Categories and weak inverses

In this section we give a notion of weak equivalence suitable for morphisms of
n-categories.

Definition 3.1. Let a n-category morphism F : C→ D be given.
For n = 0, a weak equivalence of 0-categories is a bijective map.
Hence let us suppose n > 0. F is a weak equivalence of n-categories if it satisfies
conditions (1) and (2) below:

1. for every object d0 in D, there exists an object c0 in C and a 1-cell
d1 : d0 → Fc0 such that for every d′0 in C, the morphism

d1 ◦ − : D1(Fc0, d′0)→ D1(d0, d
′
0)

is a weak equivalence of (n− 1)-categories;

2. for every pair c0, c′0 in C, F c0,c
′
0

1 : C1(c0, c′0) → D1(Fc0, F c′0) is a weak
equivalence of (n− 1)-categories.

According to Definition 3.1, we define equivalence–cells:

Definition 3.2. A 1-cell c1 : c0 → c′0 of a n-category C is weakly invertible,
when for every object c′′0 of C, the morphism

c1 ◦ − : C1(c′0, c
′′
0)→ C1(c0, c′′0)

is a weak equivalence of (n− 1)-categories.

Let us notice that a consequence of Definition 3.2 is a notion of weak equivalence
for cells of every dimension. In fact, a k-cell ck : ck−1 → c′k−1 of C is a weak
equivalence if it is so when considered as a 1-cell of Ck(ck−1, c

′
k−1).

Remark 3.3. It is interesting to translate our notion of weak equivalences into
the globular point of view. In order to unfold the induction in Definition 3.1,
let us examine it in low dimension.
Let n = 1, then F : C → D is just a functor between categories. Condition
(1) means F is h-surjective. In fact such d1 : d0 → Fc0 provided by the
definition is an isomorphic cell, as composition with it induces 0–equivalences
(i.e. isomorphisms) on hom-sets. Clearly condition (2) means F is full and
faithful, so that what we get is exactly a categorical equivalence. Carrying
on a similar analysis for n = 2 would take us to the well known notion of
bi–equivalence, and so on.
A careful look at these examples leads to the conclusion that a morphism of
n-categories F : C → D is a weak equivalence if each of its localizations is
h-surjective, means surjective up to a weakly invertible cell. In order to make
this precise we must reformulate the case n = 0 in more general terms: a set-
theoretical map F : C→ D is a 0-equivalence if and only if
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1. it is h-surjective on object, that is, surjective up to equations, that is,
surjective,

2. F is surjective on equations, that is, for every c, c′ ∈ C, Fc = Fc′ implies
c = c′, that is, F is injective.

Hence injectivity is a kind of degenerate surjectivity! Let us point out that
these conditions are exactly those of Definition 3.1 if we let Cn+1(cn, c′n) be the
singleton if cn = c′n, the empty set otherwise.

Finally we can state a globular formulation for equivalences of general n: a
morphism of n-categories F : C → D is a weak equivalence if for every pair of
k-cells ck, c′k (−1 ≤ k ≤ n) with same (k−1)-domain and (k−1)-codomain, the
localization

F
ck,c

′
k

k+1 : Ck+1(ck, c′k) −→ Dk+1(Fck, F c′k)

is h-surjective.
The cases when k < 1 deserve an explanation. For k = 0 we should think of
our n-categories C and D as suspended over the distinguished objects ?1 and
?2, i.e. as (n + 1)-categories with only 2 objects (with their identities). The
1-cells ?1 → ?2 in the suspension are labeled by the objects of C and D resp.,
the 2-cells are the 1-cells of the n-categories and so on. Of course the n-functor
F extends trivially to a (n + 1)-functor which preserves the two distinguished
base points. The case k = −1 is dealt similarly, it yields the usual notion of
h-surjectivity on objects.

Remark 3.4. Simpson has given in [Sim98] a notion of weakly invertible cell,
that is apparently stronger than that of Definition 3.2. Actually he shows that
his definition is equivalent to the corresponding notion given in [KV91]. It will
be a Corollary to our Main Theorem the fact that our Definition 3.2 is equivalent
to that of Simpson. This will fix the apparent asymmetry of our definitions.

4 Invertible cells and inverses

Purpose of this section is to relate Definition 3.2 with a notion of equiva-
lence based on the existence of weak-inverses. This has been introduced for
ω-categories by Street in [Str87]. For the reader’s convenience, we recall his
definition in the setting considered here.

Definition 4.1 (Street). Two objects c0, c′0 of an n-category C are equivalent
if there exist 1-cells c1 : c0 → c′0 and c∗1 : c′0 → c0 such that

• c1 ◦ c∗1 and 1c0 are equivalent in C1(c0, c0)

• c∗1 ◦ c1 and 1c′0 are equivalent in C1(c′0, c
′
0).

We will call an arrow Street–invertible if it establishes an equivalence (according
to Street) between its domain and its co-domain.

Street definition inductively induces systems of inverses for a given Street–
invertible cell. It is useful to spell it out in low dimensions.
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Following Definition 4.1, two elements of a set are equivalent precisely when they
are equal. Hence for a category C, an arrow c1 is Street–invertible if there exists
a c∗1 such that 1c0 = c1 ◦0 c∗1 and c∗1 ◦0 c1 = 1c′0 , that is, if c1 is an isomorphism
In a 2-category C, a 1-cell c1 as above is Street–invertible if there exist a 1-cell c∗1
and two isomorphic 2-cells i : 1c0 → c1 ◦0 c∗1 and e : c∗1 ◦0 c1 → 1c′0 , i.e. such that
there exist i∗ and e∗ with 11c0

= i ◦1 i∗, i∗ ◦1 i = 1c1◦0c∗ , 1c∗1◦0c1 = e ◦1 e∗ and
e∗ ◦1 e = 11c′0

. This is indeed the usual definition of equivalences in a 2-category.
In a 3-category C, a 1-cell c1 as above is Street–invertible if there exist a 1-cell c∗1
and two 2-equivalences i : 1c0 → c1◦0c∗1 and e : c∗1◦0c1 → 1c′0 , i.e. such that there
exist i∗ and e∗ and isomorphic 3-cells ηi : 11c0

→ i ◦1 i∗, εi : i∗ ◦1 i → 1c1◦0c∗ ,
ηe : 1c∗1◦0c1 → e◦1 e∗ and εe : e∗ ◦1 e→ 11c′0

. This gives what is commonly called
a 3-equivalence.

The main point of this paper is showing that the two notions of equivalences
of Definition 3.2 and of Definition 4.1 coincide. This is summarized by the
following

Theorem 4.2. Let C be a n-category, and let c1 : c0 → c′0 be an arrow of C.
Then c1 is an equivalence if, and only if, it is Street–invertible.

An inductive proof will be given in the following pages. One gets immediately
the following two

Corollary 4.3. Let c1 : c0 → c′0 be a weakly invertible 1-cell (that is, according
to Definition 3.2). Then for every object c′′0 of C, the morphism

− ◦ c1 : C1(c′′0 , c0)→ C1(c′′0 , c
′
0)

is a weak equivalences of (n− 1)-categories.

Proof. Since c1 is weakly invertible, it is also Street–invertible, and for the “if”
part of the proof of Theorem 4.2, one gets that both −◦ c1 and c1 ◦− are weak
equivalences of (n− 1)-categories.

Corollary 4.4. A strict n-category C is a n-groupoid according to Kapranov
and Voevodsky [KV91] if, and only if, it is a n-groupoid according to Street
[Str87].

Proof. The two notions of n-groupoid are based upon the two notions of weak
inverses proved to be equivalent by Theorem 4.2.

In [SKV09] this notion of n-groupoid is used to study exact sequences of n-
functors.

4.1 Case analysis: dimension 2

Before digging into the proof of the theorem, let us have a glance at the “if”
part, that is the less obvious one, in dimension 2. Notice that only for this
section we simplify notation by using juxtaposition for all compositions.
Let C be a 2-category, and let c1 : c0 → c′0 be Street–invertible. We want
to show that 0-compositions with c1 induces categorical equivalences on the
hom-categories obtained by localizing.
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For c1 being Street–invertible amounts to the existence of

c∗1 : c′0 → c0, i : 1c0 → c1c
∗
1, i∗ : c1c∗1 → 1c0 ,

e : c∗1c1 → 1c′0 , e∗ : 1c′0 → c∗1c1;

such that
i i∗ = 1, i∗ i = 1,
e∗ e = 1, e e∗ = 1.

For any chosen object c′′0 of C, let us consider the functor

c1− : C1(c′0, c
′′
0)→ C1(c0, c′′0)

(right 0-composition is dealt similarly). We claim it is an equivalence of cate-
gories.

Proof. Essentially surjective. Let c0
b // c′′0 be given. We exhibit an c′0

a // c′′0
such that c1a ∼= b. To this end we let a = c∗1b, and the desired isomorphism is

the composition
c′0

c∗1
��>>>>>

i∗��

a

��
c0

1
//

c1
@@�����

c0
b
// c′′0

.

Full. Let the 2-cell c0

c1x

""

c1y

<<
c′′0f

�� be given. We exhibit a 2-cell c′0

x
""

y

<<
c′′0g

�� such

that c1g = f . To this end we let g be the composition below

c′0

x

��

c0

c1
??~~~~~~~~

c′0

c∗1~~~

??~~~
1

MM

c′0
c∗1 //

1

..

1

00

c0

c1

??��������

1

00

c1

��>>>>>>>>

1

..

c′′0

c′0

c∗1

@@@

��@@@
1

��

c0

c1 ��@@@@@@@@

c′0

y

MM

e∗��

i ��

i∗ ��

e��

e��

e∗��

f
��

Let us compute c1g. First of all we observe that as far as have the composite
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c1c
∗
1, I can freely introduce the 2-identity i i∗, diagrammatically

c1 // c∗1 // ��
@@
  
>>⇓f =

c∗1

%%KKKKKK

��
c1
99ssssss

c1 %%KKKKKK   
>>⇓f

c∗1

99ssssss

GG
i∗��
i��

.

By the symmetry of the diagram, it suffices to study its upper part, in order to
show that it reduces to the identity. This will make the composition equal to
f . In fact, the upper wing can be redrawn as

c1 //

1c0

CC
c∗1 //

1c′0

��
c1
//

1c0

��
c∗1
//

1c′0

CC
c1 //

i∗��

e∗��

i��

e��

If we slide one over the other the two identities of c0 in the diagram above, we
obtain

c∗1

��

1c′0

��

c1 22

1c0
//

c1 ,,

c1 //

c∗1

CC

1c′0

II
i∗��

i��

e∗��

e��

Here the 2-cells are mutually inverse isomorphisms, hence they cancel and thus
yielding the desired result.

Faithful. Finally, let two parallel 2-cells c0

x

%%

y

99 c
′′
0f��

g
�� be given. We want to

show that if c1f = c1g then f = g. For this, simply follow the chain of equality
below:

f = //

1

��

1

CC
c1 //

x
  

y

>>
e ��

e∗ ��
f �� = //

1

��

1

CC
c1 //

x
  

y

>>
e ��

e∗ ��

g �� = g

where the hypothesis justifies the second equality.

5 The proof of Theorem 4.2

This section will take us through the proof of the main theorem. This is quite a
long proof, and not really straightforward, at least at the first sight. Nevertheless
it is worth to read it fully, as the techniques developed therein will reveal much
of the rich structure hiding behind the definitions.
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5.1 The “only–if” part

First let us notice that this implication is certainly more expectable than the
other. In fact, carefully following a classical categorical argument (the Yoneda
embedding), it is possible to show that if a 1-cell is weakly invertible, then it
has left and right inverses, i.e. it is Street–invertible.
By induction. For n = 0 there is nothing to prove, while for n = 1 the proof
is an easy consequence of Yoneda lemma. Hence let us fix an integer n > 1,
and consider consider a 1-cell c1 : c0 → c′0 of C, weakly invertible according to
Definition 3.2. Specializing the definition, we get that the 0-composition

c1 ◦ − : C(c′0, c0)→ C(c0, c0)

is indeed a weak equivalence of (n − 1)-categories. This produces an essen-
tial pre-image of the “object” 1c0 , namely a pair (c∗1, η : 1c0 ⇒ c1c

∗
1), with

η weakly invertible. Induction hypothesis immediately implies that η is also
Street–invertible, this meaning c∗1 is indeed a right Street–inverse of c1.
Now we claim that the same c∗1 is also a left Street–inverse. In fact, let us
consider the Street invertible 2-cell ω = η ◦0 c1 : c1 ⇒ c1c

∗
1c1. Of course its

domain can be seen as the composition c11c′0 . Consequently it is possible to
get an essential pre-image of ω by means of the weak equivalence of (n − 2)-
categories:

[c1 ◦ −]
1c′0

,c∗1c1

1 : [C(c0, c′0)]1(1c′0 , c
∗
1c1)→ [C(c0, c′0)]1(c1, c1c∗1c1).

In this way we produce a pair ε : 1c′0 ⇒ c∗1c1,Λ : ω V c1 ◦0 ε. In particular, ε
is Street invertible, as a consequence of the following lemma, thus showing that
c∗1 is also a left Street–inverse of c1. This proves our claim, and concludes the
proof.

Lemma 5.1. Let F : C → D be a weak equivalence of n-categories, and let
d1 : Fc0 → Fc′0 be a Street–invertible 1-cell of D, then every essential counter-
image of d1 is itself Street-invertible in C.

Proof. We will prove the statement by induction. For n = 0 the lemma holds
trivially. More interestingly for n = 1, a fully faithful functor reflect isomor-
phisms, i.e. Street–invertible arrows. Hence suppose we are given an integer
n > 1.
For every d1 : Fc0 → Fc′0 condition (1) in Definition 3.1 ensures there exists a
pair c1 : c0 → c′0, d2 : d1 ⇒ Fc1, with d2 weakly invertible. We claim that c1 is
Street–invertible.
In order to prove the claim we have to exhibit a Street–inverse γ1 : c′0 → c0 and
the two witnesses (Street–invertible 2-cells) γ2 : 1c0 ⇒ c1γ1 and γ′2 : γ1c1 ⇒ 1c′0 .
To start with, let us consider a Street-inverse of d1, let us call it d∗1 : Fc′0 → Fc0,
together with their witnesses η2 : 1Fc0 ⇒ d1d

∗
1 and e2 : d∗1d1 ⇒ 1Fc′0 . Notice

that witnesses are themselves Street-invertible, thus there are e∗2 and η∗2 etc. Let
us consider an essential pre-image of d∗1, i.e. a pair γ1 : c′0 → c0, δ2 : d∗1 ⇒ Fγ1,
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with δ2 weakly invertible. This allows us to fill the diagram below:

Fc0
Fc1

//

d1

��

1Fc0=F (1c0 )

��

F (c1γ1)

;;Fc′0 Fγ1

//

d∗1

��
Fc0

d2��
δ2��

=

η2

��

Now d2 and δ2 are Street–invertible, so that also m2 := η2 ◦1 (d2 ◦0 δ2) is. Now,

F
1c0 ,c1γ1
2 : C(c0, c0)(1c0 , c1γ1)→ D(Fc0, F c0)(F1c0 , F c1γ1)

is a localization of a weak equivalence, that is a weak equivalence itself, so that
one can find a pair n2 : 1c0 ⇒ c1γ1, m2 V Fn2. Finally, by induction hypothesis
n2 is Street–invertible. In fact, it is the essential pre-image via a 2-localization
of F (= a 1-localization of F1) of a Street–invertible 2-cell, namely m2. In order
to conclude the proof we shall observe that the same argument applies when
considering the composition γ1c1.

Remark 5.2. Now that it is clear that weakly invertible cells have indeed in-
verses, one can ask the same question for morphisms. This is critical in order
to justify or modify our terminology. Indeed weakly invertible cells give equiv-
alence relations, for instance, weakly invertible 1-cells establish an equivalence
relation in the class of the objects of a n-category. Differently weak equivalences
of n-categories do not give any equivalence relation in the class of n-categories.
In fact it is easy to show that the identity morphism of an n-category is in-
deed a weak equivalence, and that the composition of two weak equivalences is
again a weak equivalence, thus giving a reflexive and transitive relation. But
this relation is in general not symmetric, as the existence of weak equivalence
n-functor between two n-categories does not imply the existence of an inverse
equivalence n-functor. This would be the case (under the assumption of the
axiom of choice) if we consider a weaker notion of morphism of n-categories,
but this would take us far from the aims of the present work, hence we leave it
for future developing.
Nevertheless, an important class of weak equivalences is indeed invertible in our
setting, namely those that are given by left and right compositions with a weakly
invertible cell. In fact for a weakly invertible 1-cell c1 : c0 → c′0, the morphisms
of (n − 1)-categories − ◦0 c1 has an inverse given by − ◦0 c∗1. Explicitly, by
associativity their composition amounts to the n-functor − ◦0 (c1 ◦0 c∗1). Now
composition with ηi,2 gives the desired 2-morphism: for any object c′′0 in C the
natural n-transformation

C1(c′′0 , c0)

Id

((

−◦(c1◦c∗1)

66
C1(c′′0 , c0)−◦ηi,2��

Similarly one gets its weak inverse: composition with η∗i,2.
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5.2 Notation for inverses

In order to deal with inductive inverses used along the proof in the next section,
we switch to a more practical scalable notation for Street–inverses and units
we will need. At the base of the inductive process there is a 1-cell c1, and one
chosen inverse c∗1:

c1 : c0 // c′0 , c∗1 : c′0 // c0 .

Then we define the first witnesses of c∗ being inverse of c1:

ηe,2 : c∗1 ◦0 c1 // 1c′0,1 , ηi,2 : 1c0,1 // c1 ◦0 c∗1 .

where 1c0,1 = idc0 : c0 → c0 is the identity 1-cell over the object c0. Then, for
every k we define the kth witnesses of c1 being Street–invertible

ηe,k+1 : 1c∗1c1,k // ηe,k ◦k−1 η∗e,k , ηi,k+1 : 1c0,k // ηi,k ◦k−1 η∗i,k .

where 1xh,k is the h-cell x, seen as a k-identity over x, with h < k.

The situation in dimension 3 may be easily visualized with the help of globes, in
order to lead the intuition in higher dimensions. In the pictures below objects
are points, arrows are edges, two-cells are surfaces and three-cells are volumes,
orientation being described by directional arrows on those. The two globes
describe the left and the right inverses of a 1-cell c1 : c0 → c′0.

c′0

c′0

c0c0

c∗1

��

c∗1

��

c1
11 c1rr

1c′0,1

��?????????????

ηe,2ks
η∗e,2

ks

1c1c
∗
1 ,2

qy kkkkkk

1c1c
∗
1 ,2

em SSSSSS

ηe,3�
�

η∗e,3�
�

(2)
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c′0

c0

c0
1c0,1

1c0,1
11 rr

c1

��?????

c∗1

��?????ηi,2
+3

η∗i,2 +3

1c1c
∗
1 ,2 19kkk kkk

1c1c
∗
1 ,2

%-SSS SSS

ηi,3�
�

η∗i,3�
�

(3)

5.3 The “if” part

The implication vacuously holds for n = 0. For n = 1, a weakly invertible
1-cell is just an isomorphic one, then it is clear that composition with it induces
isomorphisms between the hom–sets. Hence we can well suppose n > 1. Let a
Street–invertible 1-cell c1 : c0 → c0 be given. We want to prove that for any
other object c′′0 of C, the morphisms of (n− 1)-categories

c1 ◦0 − : C1(c′0, c
′′
0)→ C1(c0, c′′0) − ◦0c1 : C1(c′′0 , c0)→ C1(c′′0 , c

′
0)

are weak equivalences, i.e. we are going to show that:

? c1 ◦0 − : C1(c′0, c
′′
0)→ C1(c0, c′′0) is h-surjective,

? for any pair of 1-cells γ1, γ
′
1 : c′0 → c′′0 , the localization

[c1 ◦0 −]γ1,γ
′
1

1 : C2(γ1, γ
′
1)→ C2(c1 ◦0 γ1, c1 ◦0 γ′1)

is h-surjective,

? for any pair of 2-cells γ2, γ
′
2 : γ1 → γ′1, the localization

[c1 ◦0 −]γ2,γ
′
2

2 : C3(γ2, γ
′
2)→ C3(c1 ◦0 γ2, c1 ◦0 γ′2)

is h-surjective,

and so on, up to n − 1 where this means full, and for n where this means
faithful. At each step h-surjectivity will be proved indirectly. The idea is that
a morphism P : A → B is h-surjective if one can find a morphism Q : B → A
and an equivalence 2-morphism α : QP ⇒ IdB. Due to the symmetry of the
notion of Street-invertible cells, the proof that the morphisms − ◦ c1 are weak
equivalences of (n − 1)-categories is completely analogous, and hence it is left
to the reader.
Let us notice that an increasing number of steps are necessary at each dimen-
sion: two steps of h-surjectivity are necessary in dimension 1, namely the usual
surjectivity and the injectivity, three in dimension two, etc. and all these are

12



somehow related in a kind of inductive network, since localizing is a process
that lowers the dimension. The picture comes clearer if we organize them in a
triangular matrix:

1 2 3 4 · · · k · · · n
D1

1 D2
1 D3

1 D4
1 · · · Dk

1 · · · Dn
1

D2
1 D2

2 D3
2 D4

2 · · · Dk
2 · · · Dn

2

D2
3 D3

3 D4
3 · · · Dk

3 · · · Dn
3

D3
4 D4

4 · · · Dk
4 · · · Dn

4

D4
5 · · · Dk

5 · · · Dn
5

. . .
...

...
Dk
k+1 · · · Dn

k+1

. . .
...

Dn
n+1

where the symbol Dk
` represents the h-surjectivity (up to (k − `)-cells) of the

`–localization of the morphism c1 ◦0 −, with c1 an arrow of the k-category C.
Induction will run over the variables k and `. More precisely the induction
hypothesis in order to prove Dk

` is that Dx
y holds for x < k, and for x = k if

y < `.

5.4 The abstract scheme

Having reduced the proof to showing different kind of surjectivity, it is reason-
able to look for a general scheme in which the different proofs of each of the Dk

`

would fit.
To this purpose, let us suppose we are given the diagram below, where we want
to prove that the morphism g : C → D is h-surjective:

A
f //

Σ∗

���
�
� B

θ

��
C

Σ

OO

g
// D

h

ggOOOOOOOOOOOOOO

(∗)

For the reasons stated above, this can be achieved by exhibiting an equivalence
2-morphism hΣ∗g ⇒ IdD (thesis). In order to get the last, it is easier to past
three simpler 2-morphisms, represented by three diagrams below (hypothesis):

A
f // B

θ

��
D

IdD

//

h

OO

D

KS

(i)

D
h

  @@@@@@@

C
Σ

//

g
>>~~~~~~~

A

��

(ii)

A
IdA //

Σ∗ ��@
@

@
@ A

C

Σ

??~~~~~~~
��

(iii)

Then the proof is the composition:

hΣ∗g = hΣ∗gIdD
(i) +3 hΣ∗ghfθ

(ii) +3 hΣ∗Σfθ
(iii) +3 hfθ

(i)∗ +3 IdD .

13



In the diagram above, (i) is a 2-morphism obtained by 0-composing with a
Street-invertible 2-cell; hence (i)∗ is the 2-morphism obtained by 0-composing
with one of its Street–inverses.
Applying this scheme to our specific situation will result in the construction
three diagrams for each pair of positive integers (k, `) with ` ≤ k + 1. Those
will be denoted by Dk

` (i),Dk
` (ii) and Dk

` (iii), while the general scheme diagram
will be denoted by Dk

` (∗).
Now, although the induction process described by the triangular matrix run up
to down (localizing) and then left to right (raising dimension), our description
will be by rows, as diagrams with fixed ` are identical, even if they are to be
interpreted in different dimensions.

Hence diagram Dk
1(∗) is given by

C(c′0, c
′′
0)

c1◦− // C(c0, c′′0)

Id=:θ1

��
C(c′0, c

′′
0)

c1◦−
//

Σ1:=Id

OO

C(c0, c′′0)

c∗1◦−
hhRRRRRRRRRRRRR

. (4)

Let us notice that the identity Σ1 is really the degenerate case 1c′0,1 ◦
0 −. For

k = 1 this a diagram of (hom)–sets and maps, hence its commutativity is re-
quired, while for higher dimensions, it will commute up to suitable 2-morphisms.

Diagram Dk
2(∗) is given by localizing the zig–zag of Dk

1(∗), for any pair γ1, γ
′
1 :

c′0 → c′′0 :

C(c′0, c
′′
0)(c∗1c1γ1, c

∗
1c1γ

′
1)

[c1◦−]1 // C(c0, c′′0)(c1c∗1c1γ1, c1c
∗
1c1γ

′
1)

θ2

��
C(c′0, c

′′
0)(γ1, γ

′
1)

[c1◦−]1

//

Σ2

OO

C(c0, c′′0)(c1γ1, c1γ
′
1)

[c∗1◦−]1
kkXXXXXXXXXXXXXXXXXXXXXX

(5)

Here Σ2 is the left/right 1-composition ηe,2γ1◦1−◦1η∗e,2γ′1. With the help of the
interchange property of compositions, it can be rewritten as (ηe,2 ◦1 η∗e,2) ◦0 −.
Referring to globes diagrams (2) and (3), this can be seen as a 0-composition
with a 2-dimensional disk, for k = 2 this is again an identity, where for the
2-cell ηe,2 being an equivalence means it is just an isomorphism. On the other
side, θ2 is the left/right 1-composition ηi,2c1γ1 ◦1 − ◦1 ηi,2c1γ′1 that cannot be
simplified as Σ2 before.
As it often happens in higher category theory, the investigation of the 3–
dimensional case is crucial in order to start induction properly: if something
nasty is going to happen in higher dimensions, then it is likely to start in di-
mension three!
Localizing the zig–zag of Dk

2(∗), for any pair of 2-cells γ2, γ
′
2 : γ1 → γ′1 gives the

14



backbone of diagram Dk
3(∗):

C3(c∗1c1γ2, c
∗
1c1γ

′
2)

[c1◦−]2 // C3(c1c∗1c1γ2, c1c
∗
1c1γ

′
2)

θ3

��
C3(γ2, γ

′
2)

[c1◦−]2

//

Σ3

OO

C3(c1γ2, c1γ
′
2) .

[c∗1◦−]2
kkVVVVVVVVVVVVVVVVVVV

(6)

Notice that we use a simplified notation for hom’s, e.g. C3(c∗1c1γ2, c
∗
1c1γ

′
2) for

C(c′0, c
′′
0)(c∗1c1γ1, c

∗
1c1γ

′
1)(c∗1c1γ2, c

∗
1c1γ

′
2).

On the contrary, the connecting morphisms Σ3 and θ3 deserve some analysis. In
fact we could not simply localize Σ2 as it would take us in a different codomain,
from the one reached by localizing [c1 ◦ −]1 composed [c∗1 ◦ −]1. In order to fill
the gap, it is necessary to connect those by the dashed morphism in the diagram
below

C3(c∗1c1γ2, c
∗
1c1γ

′
2)

C3((ηe,2 ◦1 η∗e,2)γ2, (ηe,2 ◦1 η∗e,2)γ′2)

ηe,3γ2◦2−◦2η∗e,3γ
′
2

OO�
�
�

C3(γ2, γ
′
2)

[Σ2]1

OO

This composition defines Σ2, that by interchange laws it can be rewritten as

(ηe,3 ◦2 η∗e,3) ◦0 − .

For the morphism θ3 the problem is similar, similar the solution: the required
connecting morphism is the dashed arrow below:

C3(c1c∗1c1γ2, c1c
∗
1c1γ

′
2)

[θ2]1
��

C3(ηi,2c1γ1 ◦1 c1c∗1c1γ2 ◦1 η∗i,2c2γ′1, ηi,2c1γ1 ◦1 c1c∗1c1γ′2 ◦1 η∗i,2c1γ′1)

(♠)

C3((ηi,2 ◦1 η∗i,2)c1γ2, (ηi,2 ◦1 η∗i,2)c1γ′2)

ηi,3c1γ2◦2−◦2η∗i,3c1γ
′
2

���
�
�

C3(c1γ2, c1γ
′
2)

where the equality (♠) is guaranteed by the Interchange Lemma 5.3. Let us
observe that in this case it is not possible to rewrite it as a 0-composition with
a globe, as for Σ3.
Finally, for a generic ` = λ one has the diagram Dk

λ(∗):

Cλ(c∗1c1γλ−1, c
∗
1c1γ

′
λ−1)

[c1◦−]λ−1 // Cλ(c1c∗1c1γλ−1, c1c
∗
1c1γ

′
λ−1)

θλ

��
Cλ(γλ−1, γ

′
λ−1)

[c1◦−]λ−1

//

Σλ

OO

Cλ(c1γλ−1, c1γ
′
λ−1)

[c∗1◦−]λ−1

kkWWWWWWWWWWWWWWWWWWWWW

. (7)
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where vertical morphisms are defined inductively:

Cλ(γλ−1, γ
′
λ−1)

[Σλ−1]1

// [?]λ
ηe,λγλ−1◦λ−1−◦λ−1η∗e,λγ

′
λ−1

// Cλ(c∗1c1γλ−1, c
∗
1c1γ

′
λ−1)

Cλ(c1c∗1c1γλ−1, c1c
∗
1c1γ

′
λ−1)

[θλ−1]1

// [•]λ
ηi,λc1γλ−1◦λ−1−◦λ−1η∗i,λγ

′
λ−1

// Cλ(c1γλ−1, c1γ
′
λ−1)

In fact these two pair of morphisms are composable. We examine the [•]λ in
detail. By induction, the codomain of the first morphism is the (n−λ)-category

Cλ
(
ηi,λ−1c1γλ−2 ◦λ−2 (ηi,λ−2 ◦λ−3 η∗i,λ−2)c1γλ−1 ◦λ−2 η∗i,λ−1c1γ

′
λ−2, (8)

ηi,λ−1c1γλ−2 ◦λ−2 (ηi,λ−2 ◦λ−3 η∗i,λ−2)c1γ′λ−1 ◦λ−2 η∗i,λ−1c1γ
′
λ−2

)
while by definition the domain on the second is

Cλ
(
(ηi,λ−1 ◦λ−2 η∗i,λ−1)c1γλ−1, (ηi,λ−1 ◦λ−2 η∗i,λ−1)c1γ′λ−1

)
(9)

Their equality is just a straightforward application of the first statement of
Lemma 5.3.
Concerning [?]λ, a similar discussion can be carried on, by the second statement
of the Lemma.

Lemma 5.3. Let cells c’s λ’s and η’s be given as above. Then the following
two equations hold:

ηi,λ−1c1γλ−2 ◦λ−2 (ηi,λ−2 ◦λ−3 η∗i,λ−2)c1γλ−1 ◦λ−2 η∗i,λ−1c1γ
′
λ−2 =

= (ηi,λ−1 ◦λ−2 η∗i,λ−1)c1γλ−1 (10)

ηe,λ−1γλ−2 ◦λ−2 (ηe,λ−2 ◦λ−3 η∗e,λ−2)γλ−1 ◦λ−2 η∗e,λ−1γ
′
λ−2 =

= (ηe,λ−1 ◦λ−2 η∗e,λ−1)γλ−1 (11)

Proof. It is sufficient to apply functoriality of compositions, a.k.a. interchange
rules of n-categories.

5.5 The base of the induction

The base of the induction can be deduced directly, but it is useful to show at
least the three self–explaining diagrams in dimension 1. Let us observe that
since an arrow of a category C is an equivalence when it is an isomorphism,
the composites like c∗1c1 are identities. Moreover diagrams commutes strictly,
as the only natural transformation between (hom)–set–theoretical maps are the
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identical ones.

D1
1(i) :

C1(c′0, c
′′
0)

c1◦0− // C1(c0, c′′0)

θ1=Id

��
C1(c0, c′′0)

c∗1◦
0−

OO

Id
// C1(c0, c′′0)

D1
1(ii) :

C1(c0, c′′0)
c∗1◦

0−

��???????

C1(c′0, c
′′
0)

c1◦0−
??�������

Σ1=Id
// C1(c′0, c

′′
0)

D1
1(iii) :

C1(c0, c′0) Id //

Σ∗1 ��>>>>>>>
C1(c0, c′0)

C1(c0, c′0)
Σ1=Id

??�������

5.6 Proof of Dk
` (i)

From now on, suppose we are given cells:

γλ−1, γ
′
λ−1 : γλ−2 → γ′λ−2 : · · · : γ1 → γ′1 : c′0 → c′′0

Let us consider the diagram below:

Cλ(c∗1c1γλ−1, c
∗
1c1γ

′
λ−1)

[c1◦−]λ // Cλ(c1c∗1c1γλ−1, c1c
∗
1c1γ

′
λ−1)

[θλ−1]1

��
[•]λ

ηi,λc1γλ−1◦λ−1−◦λ−1η∗i,λγ
′
λ−1

��
Cλ(c1γλ−1, c1γ

′
λ−1)

[c∗1◦−]λ

OO

[c1c
∗
1◦−]λ

22

(ηi,λ◦λ−1η∗i,λ)◦0−

&&

Id
// Cλ(c1γλ−1, c1γ

′
λ−1)

ηi,λ+1◦0−
KS

By induction, one can suppose that the composition [c1c
∗
1◦−]λ ·[θλ−1]1 equals to

the morphism (ηi,λ−1 ◦λ−2 η∗i,λ−1)◦0−. Then (λ−1)-composing with ηi,λc1γλ−1

on the left and with η∗i,λγ
′
λ−1 on the right can be seen as pasting two hemispheres

on a disk of the same diameter (always refer to diagrams (2) and (3) for an
intuition), hence by interchange the whole turns into a 0-composition with the
globe (ηi,λ ◦λ−1 η∗i,λ). This explains the commutativity of the empty part of the
diagram, that so can be filled with the 2-morphism ηi,λ+1 ◦0 −.
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5.7 Proof of Dk
` (ii)

Concerning the diagrams of type (ii), the proof is similar but simpler. Let us
consider the diagram

Cλ(c1γλ−1, c1γ
′
λ−1)

[c∗1◦−]λ

((RRRRRRRRRRRRRRRRRRRRRRR

ηe,λ+1◦0−
��

Cλ(γλ−1, γ
′
λ−1)

[Σλ−1]1

//

[c1◦−]λ

66lllllllllllllllllllllll
[?]λ

ηe,λγλ−1◦λ−1−◦λ−1η∗e,λγ
′
λ−1

// Cλ(c∗1c1γλ−1, c
∗
1c1γ

′
λ−1)

By induction one can deduce that the composition at the base of the triangle
is the indeed the morphism (ηe,λ ◦λ−1 ηe, λ∗) ◦0 −, i.e. a 0-composition with a
globe. The 2-morphism follows as before.

5.8 Proof of Dk
` (iii)

The construction of type-(iii) diagrams is slightly more delicate. In fact here not
only equations come from induction, but even the existence of some morphisms,
hence it will be detailed in low dimensions.
The triangle Dk1(iii)

C1(c0, c′0) Id //

Σ∗1 &&M
M

M
M

M
C1(c0, c′0)

C1(c0, c′0)
Σ1=Id

88qqqqqqqqqq

is commutative. In this case, the inverse morphism Σ∗1 is just the (strict) inverse
of an identity, namely the identity itself.
Next, diagram Dk2(iii) is given below:

C2(c∗1c1γ1, c
∗
1c1γ

′
1) Id //

Σ∗2 ((QQQQQQ

Ξ2��

C2(c∗1c1γ1, c
∗
1c1γ

′
1)

C2(γ1, γ
′
1)

Σ2

66mmmmmmmmmmmm

The morphism Σ2 is a left/right 1-composition with ηe,2γ1, resp. η∗e,2γ
′
1. Then

it has a weak–inverse given by exchanging left with right composite. Moreover,
since

Σ2 = ηe,2γ1 ◦1 − ◦1 η∗e,2γ′1
Σ∗2 = η∗e,2γ1 ◦1 − ◦1 ηe,2γ′1

one can compute their composition:

Σ∗2 · Σ2 = (ηe,2 ◦1 η∗e,2)γ1 ◦1 − ◦1 (ηe,2 ◦1 η∗e,2)γ′1

and we can define a suitable 2-morphism Ξ2 = ηe,3γ1◦2 − ◦2ηe,3γ′1 that complete
the picture.
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The 3-dimensional case is represented in diagram Dk3(iii) below, and it gives the
model for the general situation:

C3(c∗1c1γ2, c
∗
1c1γ

′
2) Id //

η∗e,3γ2◦
2−◦2ηe,3γ′2 ''NNNNNNNNNNNN

Ξ3��

C3(c∗1c1γ2, c
∗
1c1γ

′
2)

[?]λ Id //

[Σ2]∗1 $$J
J

J
J

J

∃3��
�
�

�
�

[?]λ
ηe,3γ2◦2−◦2η∗e,3γ

′
2

77pppppppppppp

C3(γ2, γ
′
2)

[Σ2]1

::uuuuuuuuu

Our investigations in dimension 2 suggests that the trapezoidal area can be
filled with the 2-morphism Ξ3 = ηe,4γ2 ◦3 − ◦3 ηe,4γ′2, the triangle below must
be constructed first. In fact what we are doing is finding a left weak–inverse
to the morphism [Σ2]1. Although this is a localization of the equivalence Σ2, it
cannot just be the localization of its inverse, because in general this would take
far from the desired codomain C3(γ2, γ

′
2). Thus we must use induction. [Σ2]1 is

the localization of a morphism given by two 1-compositions. By the dimensional
shift, in the hom–2-categories the 1-composition is precisely their 0-composition.
Now the (whole) theorem states that those morphism that are given by a 0-
composition with an equivalence–1-cell are weakly invertible. Then there exist
[Σ2]∗1 and ∃3 as in the diagram above, and this concludes the 3-dimensional case.
Finally we deal with diagram Dk3(iii)

Cλ(c∗1c1γλ−1, c
∗
1c1γ

′
λ−1) Id //

η∗e,λγλ−1◦λ−1−◦λ−1ηe,λγ
′
λ−1 &&LLLLLLLLLLL

Ξ3��

Cλ(c∗1c1γλ−1, c
∗
1c1γ

′
λ−1)

[?]λ Id //

[Σλ−1]∗1 ""E
E

E
E

∃λ��
�
�

�
�

[?]λ
ηe,λγλ−1◦λ−1−◦λ−1η∗e,λγ

′
λ−1

88rrrrrrrrrrr

C3(γλ−1, γ
′
λ−1)

[Σλ−1]1

<<yyyyyyyy

Again, the 2-morphism Ξλ can be defined directly in terms of compositions, i.e.
ηe,λ+1γλ−1 ◦λ − ◦λ ηe,λ+1γ

′
λ−1. Concerning [Σλ−1]1, it has a weak–inverse by

induction. In fact, it is the composite of decreasing localizations of compositions
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of increasing dimension:

C3(γλ−1, γ
′
λ−1

[ηe,2γ1◦1−◦1η∗e,2γ
′
1]λ−2

��

[Σλ−1]1

��

•
[ηe,3γ2◦2−◦2η∗e,3γ

′
2]λ−3

��
•

[ηe,4γ3◦3−◦3η∗e,4γ
′
3]λ−4

��
•

•

[ηe,λ−1γλ−2◦λ−2−◦λ−2ηe,λ−1γ
′
λ−2]1

��
[?]λ

From up to down, the first composite has a weak–inverse by Dk−1
λ−1, the second

by Dk−1
λ−2, and so on up to the (λ− 2)th, for which the property holds by Dk−1

2 .
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