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Yoneda’s spans

In 1960, Nobuo Yoneda published the paper:

N.Yoneda, On Ext and exact sequences, J.Fac.Sci.Univ. Tokyo Sect.I 8

which provides a description of (equivalences classes of) n-fold extensions

0 → B → En → · · · → E1 → A → 0

in a (sufficiently good) additive category A.

Yoneda himself explains his idea in the introduction.
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Yoneda’s On Ext and exact sequences

“The n-fold extensions over A with kernel B in an additive category A
will be considered as some quantity lying between A and B , or lying
over the pair (A,B), which we want to classify to get Extn(A,B).
Then, the totally of n-fold extensions in A is considered as a sort of
web spanning pairs of objects. [. . . ] the web gives a certain
correspondence between A and a copy of A [. . . ] which renders the
functorial structure of Extn(A,B).”

“In generalizing this situation, we consider a pair of categories (A,B)
and a third category X together with two covariant functors
S− : X → A and S+ : X → A, or to the same effect, a covariant functor
S : X → A× B, which we call span over (A,B).”

“Our domain of theory will be abstract categories, and no applications
are intended in this paper. They will be found elsewhere.”
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Yoneda’s regular spans

Given a span S : X → A× B, let S(a,b) be the fibre of S over the object

(a, b), and let S̄(a,b) = π0(S(a,b))).

Question

What axioms on S in order to get S̄(−,−) functorial?

Definition (Yoneda, 1960)

S is a regular span if

X S !! A× B P0 !! A is a fibration with enough P1S-vertical
P0S-cartesian lifts,

X S !! A× B P1 !! A is an opfibration with enough
P0S-vertical P1S-opcartesian lifts.

Theorem (Yoneda, 1960)

S̄(a,b) defines a functor Aop × B → Set.
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What is a regular span?

Question

What is a regular span S?
Is it just an ad-hoc definition in order to make S̄(a,b) functorial?

Proposition (CMM, 2017)

For a given span S : X → A× B, TFAE:
S is a regular span

S : P0S → P0 is a fiberwise opfibration in Fib(A)

i.e. a cartesian functor over A such that, for any object a of A, its
restrictions to the fibres over a are opfibrations:

Sa : Xa → {a}× B ≃ B

S : P1S → P1 is a fiberwise fibration in opFib(B)
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What is a regular span?

Still, definitions seem to be ad-hoc. . .
How much of such definitions is internal (in a 2-categorical sense)?

Let us consider the following conditions on a commut. diagram in Cat:

X

F ""❅
❅❅

❅❅
❅❅

❅
P !!M

P0##⑤⑤
⑤⑤
⑤⑤
⑤⑤

A

(1) P is a morphism in Fib(A)
(2) for every object a of A, the restriction to the fibres

Xa
Pa !!Ma

is an opfibration
(3) for every two arrows α : a1 → a2 and µ : m1 → m2 such that

P0(µ) = 1a2 , and any object x of X such that P(x) = m1, then the
canonical comparison α∗µ∗x → µ∗α

∗x is an isomorphism.
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What is a regular span?

Proposition (CMM, 2017)

For a commutative diagram in Cat

X
F
$$❚❚❚

❚❚❚
P !!M

P0
%%✐✐✐✐

✐✐
A

(1)+(2)
def⇔ P fiberwise opfibration ⇔ (1) + P opfibration in Cat/A

(1)+(2)+(3) ⇔ P opfibration in Fib(A)

(2 discr.) ⇔ P discrete opfibration in Cat/A
(1)+(2 discr.) ⇔ (1)+(2 discr.)+(3) ⇔ (1)+(2 discr.)+(3 id.) ⇔
P discrete opfibration in Fib(A)

The proof uses Chevalley criterion [Street 1974, after Gray 1966], for the
characterization of (Grothendieck) cloven opfibrations in terms of
(normal) pseudo-algebras for a lax idempotent 2-monad.
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What is a regular span?

Corollary

For a commutative diagram in Cat

X

F &&■
■■

■■
■

S !! A× B

P0''&&&
&&
&&

A

(1)+(2) i.e. S fiberwise opfibration ⇔ S regular span

(1)+(2)+(3) ⇔ S opfibration in Fib(A) ⇔ S 2-sided fibration

(1)+(2 disc.) ⇔ S discrete 2-sided fibration (= profunctor)

Remark

Although the notion of regular span is in principle weaker than that of
2-sided fibration, it is worth observing that the relevant example Extn is
indeed a 2-sided fibration.
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The fibred viewpoint

Next proposition is not present in [Yoneda, 1960], but its proof is!

Proposition

Given a regular span S : X → A× B, there is a factorization S = S̄Q in
Fib(A):

X

F ((❄
❄❄

❄❄
❄❄

❄
Q !! X̄

F̄
))

S̄ !! A× B

P0**①①
①①
①①
①①
①

A

such that, for every object (a, b) in A× B, S̄(a,b) = π0(S(a,b)).

Theorem (CMM, 2017)

Such a factorization is the (initial/discrete opfibration) in Fib(A).

(Internal version of comprehensive factorization [Street-Walters, 1973])
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The fibred viewpoint

Idea of the proof of the Proposition.

K(S)

++

,,
--κ.. X

F ((❄
❄❄

❄❄
❄❄

❄
Q !! X̄

F̄

))

S̄ !! A× B

P0
**②②
②②
②②
②②
②

A

1. The correspondence between A and B referred by Yoneda is a

profunctor S̄ : B ✤ !! A , i.e. a discrete opfibration in Fib(A).

2. Q is the coidentifier of the identee (K(S),κ) of S in Cat, hence
initial and final.

3. Both the identee and the coidentifier live in Cat/A and in Fib(A)

Terminology: identee (australian) = kernel cell (french)
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Non abelian settings

Now we want to apply the fibred viewpoint to a fiberwise opfibration
such that P0 is a split fibration:

X
F ,,▼▼
▼▼▼

▼
P !!M

P0'',,,
,,,

A

Definition (CMMV, 2016)

This is called Basic Setting for a Strict Obstruction Theory (SOT).

Theorem (CMMV, 2016)

In a b.s. for a SOT (P ,F ,P0), given x1, x2 in X , and µ : P(x1) → P(x2),
there is a bijection

Xµ(x1, x2)
∼ !! XP(µ∗(x2))(µ∗(x1), µ

∗(x2))

In particular, Xµ(x1, x2) ∕= ∅ ⇔ µ∗(x1) ∼ µ∗(x2)
Giuseppe Metere Some thoughts on Yoneda’s “regular spans” and related notions



intro fibred viewpoint non-abelian setting

Non abelian settings

A leading example we have in mind is

XExt2(Gp)

π0

&&❏
❏❏

❏❏
❏❏

❏❏
❏

(π0,π1) !! Mod(Gp)

U
//✉✉
✉✉
✉✉
✉✉
✉

Gp

and generalizations. . .

take crossed n-fold extensions of groups (classical)

take a (nice) category C, instead of Gp (Bourn, Rodelo)

Notice that, since U is split, we have a description

Mod(Gp) = Gp⋉
!

G∈Gp

G-Mod
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Non abelian settings

Theorem (CMM, 2017)

Given a Basic Setting for a SOT

P : F → P0

there is a factorization P = S̄Q in Fib(A):

X

F ((❅
❅❅

❅❅
❅❅

❅
Q !! X̄

F̄
))

S̄ !!M

P0##⑥⑥
⑥⑥
⑥⑥
⑥⑥

A

such that for every object m in M, S̄m = π0(Sm).

Such a factorization is the (initial/discrete opfibration) in Fib(A).

Of course, for M = A× B and P a regular span, we get Yoneda’s result.
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Non abelian settings

K(S)

++

,,
--κ.. X

F ((❄
❄❄

❄❄
❄❄

❄
Q !! X̄

F̄

))

P̄ !!M

P0##⑦⑦
⑦⑦
⑦⑦
⑦⑦

A
Again, the proof that Q is initial is obtained by showing that it is the
coidentifier of (K(P),κ).

On the other hand, we show that P̄ is a discrete opfibration in Fib(A),
but we lose the connection with profunctors.

This fact raises new questions. . .
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Breaking the symmetry

Is it possible to give an interpretation of a fiberwise opfibration that
generalizes the interpretation of a regular span as a profunctor?

X̄

))
A× B

⇔
X̄

00⑦⑦
⑦⑦
⑦⑦
⑦⑦

((❄
❄❄

❄❄
❄❄

❄

A B

X̄

))
A⋊

"
Ma

⇔ ?

Moreover, so far we analyzed only the functorial properties of S̄ , but in a
(nice) additive setting, regular spans determine also additive structures
on the S̄(a,b). . .
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THANK YOU!
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