Some thoughts on Yoneda's "regular spans" and related notions

Giuseppe Metere (joint work with A. S. Cigoli, S. Mantovani)

Università degli Studi di Palermo Palermo, Italy

5th Workshop on Categorical Methods in Non-Abelian Algebra, UCL, Louvain-la-Neuve, July 2017.

- INTRODUCTION: YONEDA'S REGULAR SPANS
- The fibred viewpoint
- A NON-ABELIAN VARIATION

- INTRODUCTION: YONEDA'S REGULAR SPANS
- The fibred viewpoint
- A NON-ABELIAN VARIATION

Yoneda's spans

In 1960, Nobuo Yoneda published the paper:

N.Yoneda, On Ext and exact sequences, J.Fac.Sci.Univ. Tokyo Sect.18

which provides a description of (equivalences classes of) n-fold extensions

$$0 \to B \to E_n \to \dots \to E_1 \to A \to 0$$

in a (sufficiently good) additive category \mathcal{A} .

Yoneda himself explains his idea in the introduction.

Yoneda's On Ext and exact sequences

"The *n*-fold extensions over A with kernel B in an additive category A will be considered as some quantity lying between A and B, or lying over the pair (A, B), which we want to classify to get $\mathsf{Ext}^n(A, B)$. Then, the totally of *n*-fold extensions in A is considered as a sort of web spanning pairs of objects. [...] the web gives a certain correspondence between A and a copy of A [...] which renders the functorial structure of $\mathsf{Ext}^n(A, B)$."

"In generalizing this situation, we consider a pair of categories $(\mathcal{A}, \mathcal{B})$ and a third category \mathcal{X} together with two covariant functors $S_-: \mathcal{X} \to \mathcal{A}$ and $S_+: \mathcal{X} \to \mathcal{A}$, or to the same effect, a covariant functor $\mathcal{S}: \mathcal{X} \to \mathcal{A} \times \mathcal{B}$, which we call span over $(\mathcal{A}, \mathcal{B})$."

"Our domain of theory will be abstract categories, and no applications are intended in this paper. They will be found elsewhere."

Yoneda's regular spans

Given a span $S: \mathcal{X} \to \mathcal{A} \times \mathcal{B}$, let $S_{(a,b)}$ be the fibre of S over the object (a, b), and let $\bar{S}_{(a,b)} = \pi_0(S_{(a,b)})$.

Question

What axioms on S in order to get $\overline{S}_{(-,-)}$ functorial?

Definition (Yoneda, 1960)

S is a regular span if

- $\mathcal{X} \xrightarrow{S} \mathcal{A} \times \mathcal{B} \xrightarrow{P_0} \mathcal{A}$ is a fibration with enough P_1S -vertical P_0S -cartesian lifts,
- $\mathcal{X} \xrightarrow{S} \mathcal{A} \times \mathcal{B} \xrightarrow{P_1} \mathcal{A}$ is an opfibration with enough P_0S -vertical P_1S -opcartesian lifts.

Theorem (Yoneda, 1960)

$$\bar{S}_{(a,b)}$$
 defines a functor $\mathcal{A}^{op} \times \mathcal{B} \to \mathbf{Set}$.

Giuseppe Metere

Some thoughts on Yoneda's "regular spans" and related notions

- INTRODUCTION: YONEDA'S REGULAR SPANS
- The fibred viewpoint
- A NON-ABELIAN VARIATION

Question

What is a regular span S? Is it just an ad-hoc definition in order to make $\bar{S}_{(a,b)}$ functorial?

Proposition (CMM, 2017)

For a given span $S \colon \mathcal{X} \to \mathcal{A} \times \mathcal{B}$, TFAE:

- S is a regular span
- $S: P_0S \rightarrow P_0$ is a fiberwise opfibration in Fib(A)

i.e. a cartesian functor over A such that, for any object a of A, its restrictions to the fibres over a are opfibrations:

$$S_a \colon \mathcal{X}_a \to \{a\} \times \mathcal{B} \simeq \mathcal{B}$$

• $S: P_1S \rightarrow P_1$ is a fiberwise fibration in $opFib(\mathcal{B})$

Still, definitions seem to be ad-hoc...

How much of such definitions is internal (in a 2-categorical sense)?

Let us consider the following conditions on a commut. diagram in Cat:

- (1) *P* is a morphism in Fib(A)
- (2) for every object a of A, the restriction to the fibres

$$\mathcal{X}_a \xrightarrow{P_a} \mathcal{M}_a$$

is an opfibration

(3) for every two arrows $\alpha: a_1 \to a_2$ and $\mu: m_1 \to m_2$ such that $P_0(\mu) = 1_{a_2}$, and any object x of \mathcal{X} such that $P(x) = m_1$, then the canonical comparison $\alpha^* \mu_* x \to \mu_* \alpha^* x$ is an isomorphism.

Proposition (CMM, 2017)

For a commutative diagram in Cat

$$\mathcal{X} \xrightarrow{P} \mathcal{M}$$

- (1)+(2) $\stackrel{\text{def}}{\Leftrightarrow}$ P fiberwise opfibration \Leftrightarrow (1) + P opfibration in Cat/A
- $(1)+(2)+(3) \Leftrightarrow P$ opfibration in **Fib**(A)
- (2 discr.) \Leftrightarrow *P* discrete opfibration in **Cat**/A
- (1)+(2 discr.) \Leftrightarrow (1)+(2 discr.)+(3) \Leftrightarrow (1)+(2 discr.)+(3 id.) \Leftrightarrow *P* discrete opfibration in **Fib**(A)

The proof uses Chevalley criterion [Street 1974, after Gray 1966], for the characterization of (Grothendieck) cloven opfibrations in terms of (normal) pseudo-algebras for a lax idempotent 2-monad.

Corollary

For a commutative diagram in Cat

- (1)+(2) i.e. S fiberwise opfibration \Leftrightarrow S regular span
- $(1)+(2)+(3) \Leftrightarrow S$ opfibration in **Fib**(A) $\Leftrightarrow S$ 2-sided fibration
- (1)+(2 disc.) \Leftrightarrow S discrete 2-sided fibration (= profunctor)

Remark

Although the notion of regular span is in principle weaker than that of 2-sided fibration, it is worth observing that the relevant example Ext^n is indeed a 2-sided fibration.

The fibred viewpoint

Next proposition is not present in [Yoneda, 1960], but its proof is!

Proposition

Given a regular span $S : \mathcal{X} \to \mathcal{A} \times \mathcal{B}$, there is a factorization $S = \overline{S}Q$ in $Fib(\mathcal{A})$:

such that, for every object (a, b) in $\mathcal{A} \times \mathcal{B}$, $\overline{S}_{(a,b)} = \pi_0(S_{(a,b)})$.

Theorem (CMM, 2017)

Such a factorization is the (initial/discrete opfibration) in Fib(A).

(Internal version of comprehensive factorization [Street-Walters, 1973])

The fibred viewpoint

Idea of the proof of the Proposition.

- 1. The correspondence between \mathcal{A} and \mathcal{B} referred by Yoneda is a profunctor $\overline{S}: \mathcal{B} \longrightarrow \mathcal{A}$, i.e. a discrete opfibration in **Fib**(\mathcal{A}).
- 2. Q is the coidentifier of the identee $(\mathcal{K}(S), \kappa)$ of S in **Cat**, hence initial and final.
- 3. Both the identee and the coidentifier live in Cat/A and in Fib(A)

Terminology: identee (australian) = kernel cell (french)

- INTRODUCTION: YONEDA'S REGULAR SPANS
- The fibred viewpoint
- A NON-ABELIAN VARIATION

Non abelian settings

Now we want to apply the fibred viewpoint to a fiberwise opfibration such that P_0 is a split fibration:

Definition (CMMV, 2016)

This is called Basic Setting for a Strict Obstruction Theory (SOT).

Theorem (CMMV, 2016)

In a b.s. for a SOT (P, F, P_0) , given x_1, x_2 in \mathcal{X} , and $\mu: P(x_1) \rightarrow P(x_2)$, there is a bijection

$$\mathcal{X}_{\mu}(x_1, x_2) \xrightarrow{\sim} \mathcal{X}_{P(\mu^*(x_2))}(\mu_*(x_1), \mu^*(x_2))$$

In particular,

$$\mathcal{X}_{\mu}(x_1, x_2) \neq \emptyset$$

 $\mu_*(x_1) \sim \mu^*(x_2)$ \Leftrightarrow

Giuseppe Metere

Some thoughts on Yoneda's "regular spans" and related notions

Non abelian settings

A leading example we have in mind is

and generalizations...

- take crossed *n*-fold extensions of groups (classical)
- take a (nice) category C, instead of **Gp** (Bourn, Rodelo) Notice that, since U is split, we have a description

$$\mathsf{Mod}(\mathsf{Gp}) = \mathsf{Gp} \ltimes \coprod_{G \in \mathsf{Gp}} G\operatorname{\mathsf{-Mod}}$$

Non abelian settings

Theorem (CMM, 2017)

Given a Basic Setting for a SOT

$$P \colon F \to P_0$$

there is a factorization $P = \overline{S}Q$ in **Fib**(A):

such that for every object *m* in M, $\bar{S}_m = \pi_0(S_m)$. Such a factorization is the (initial/discrete opfibration) in **Fib**(A).

Of course, for $\mathcal{M} = \mathcal{A} \times \mathcal{B}$ and P a regular span, we get Yoneda's result.

Non abelian settings

Again, the proof that Q is initial is obtained by showing that it is the coidentifier of $(\mathcal{K}(P), \kappa)$.

On the other hand, we show that \overline{P} is a discrete opfibration in **Fib**(A), but we lose the connection with profunctors.

This fact raises new questions...

Breaking the symmetry

Is it possible to give an interpretation of a fiberwise opfibration that generalizes the interpretation of a regular span as a profunctor?

Moreover, so far we analyzed only the functorial properties of \overline{S} , but in a (nice) additive setting, regular spans determine also additive structures on the $\overline{S}_{(a,b)}$...

THANK YOU!