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Abstract

We first compare several algebraic notions of normality, from a categorical view-
point. Then we introduce an intrinsic description of Higgins’ commutator for
ideal-determined categories, and we define a new notion of normality in terms
of this commutator. Our main result is to extend to any semi-abelian category
the following well-known characterization of normal subgroups: a subobject K
is normal in A if, and only if, [A,K] ≤ K.
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1. Introduction

The notion of ideal is central in many algebraic disciplines. As recalled in
[GU84, JMU07], in universal algebra ideals were introduced by Higgins [Hig56]
for Ω-groups, and by Magari [Mag67] in a more general setting (where not all
ideals have to be kernels). Subsequently, Agliano and Ursini [AU92] defined
clots, a notion lying in-between kernels and ideals.

It was only in 2007 that Janelidze, Márki and Ursini [JMU07] reviewed from
a categorical perspective the relationship among normal subobjects, clots and
ideals. They described these three concepts in an intrinsic setting, by using the
notion of internal action [BJ98, BJK05]. They showed that the relationships

N(A) ⊆ C(A) ⊆ I(A)

among the sets of normal subobjects, clots and ideals in an object A, become
equalities in the semi-abelian case (categorical counterpart of the BIT-speciale
varieties of [Urs73]).

Actually, in the varietal case, BIT-speciale axioms are more than enough
in order to guarantee N(A) = I(A): this equality holds also in the weaker
context of BIT varieties of [Urs72], also called ideal-determined in [GU84]. In
[JMTU09] the authors showed that the categorical counterpart of BIT varieties
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can be obtained by removing the so-called Hofmann’s Axiom from the old-style
definition of a semi-abelian category [JMT02]. They called these categories
ideal-determined.

In this paper, we first revisit various notions of normalities from kernels
to ideals, pointing out the relationships exiting among them in appropriate
categorical contexts. Then we move in the ideal-determined case, where all those
notions collapse, since the images of kernels along regular epimorphisms are
again kernels. This fact allows us to formulate the categorical notion of Higgins’
commutator. The last is obtained by taking (through the realization map,
see 4.3) the regular image of the formal commutator, internal interpretation of
the commutator words of [Hig56]. By following this approach, we revisit also
Huq’s commutator [Huq68], showing that in an ideal-determined unital category
[BB04], Huq’s commutator [H,K]Q in A is nothing but the normalization in A
of Higgins’ commutator [H,K]H . The two commutators are different in general,
even in the category of groups, if H and K are not normal in A, as Example
4.6 shows.

Nevertheless they always coincide when H ∨ K = A, in particular if one
of the two subobjects is the whole A. In this case we can freely refer to the
commutator [A,K] (notice that when K is normal, the last coincides also with
the normalization of Smith’s commutator, as shown in [GVdL08]). The case
H = A is special even because in this circumstance the commutator behaves well
w.r.t. normalization, in the sense that [A,K] = [A,K], as shown in Proposition
4.7.

In the category of groups, the commutator [A,K] can be used to test wether
the subgroup K of A is normal in A. Actually K is normal in A if, and only
if, [A,K] is a subgroup of K. This characterization of normal subgroups is
interesting even because it establish a link between normality and commutators.
A natural question is to ask if the internal formulation of this connection is still
valid in our settings.

If a category C is ideal-determined and unital, Proposition 5.1 shows that any
normal subobject K of A contains the commutator [A,K]. In order to get the
converse, we need to use one more ingredient, namely Hoffmann’s Axiom, which
makes C into a semi-abelian category. In this context, by means of Proposition
4.7, we can use some results by Bourn and Gran on central extensions [BG02,
BG02a, BG02b] proving this way that the full characterization of normality
via commutators holds an any semi-abelian category. This result extends what
happens for groups to rings, Lie algebras, Leibniz algebras, more generally any
variety of ω-groups, as well as to Heyting algebras to the dual category of the
category of pointed sets.

We express our gratitude to our colleagues of the Seminario Permanente di
Categorie di Milano, for their helpful advices and constant support.

2. Normalities

We present some different notions of normality, and try to explain the re-
lationship among them. Although some of those can be defined with few re-
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quirements on the base category C, we will assume throughout the paper that
C is (at least) a pointed category with finite limits. Finally, these notions are
presented from the strongest to the weakest.

Kernels
This is classical. A map k : K → A is a kernel when there exists a map

f : A→ B such that the following is a pullback diagram

K //

k

��

y
0

��
A

f
// B.

In other words, a kernel is the fiber over the zero-element of the codomain of a
certain morphism. Notice that k is a monomorphism, so that kernels are indeed
sub-objects.

Normal subobjects
The categorical notion of normality has been introduced for a finitely com-

plete category by Bourn in [Bou00]. Let (R, r1, r2) be an equivalence relation
on an object A. We call a map k : K → A normal to R when the following two
diagrams are pullbacks:

K ×K k̃ //

id

��

y
R

〈r1,r2〉
��

K ×K
k×k

// A×A

K ×K k̃ //

π1

��

y
R

r1

��
K

k
// A.

The map k results to be a mono, and diagrams above express nothing but the
fact that the subobject K is an equivalence class of R.

Let us notice that, as C has a zero object, any equivalence relation determines
a unique normal monomorphism: it suffices to take the pullback

K //

k

��

y
R

〈r1,r2〉
��

A
〈1,0〉

// A×A,

(1)

i.e. in the pointed case, any normal subobject K is precisely the class [0]R of
an equivalence relation R (see [BB04]).

The kernel of a map f is normal to the usual kernel pair equivalence relation
R[f ], so that every kernel is normal. The converse is not true in general. It
is so when the base category C is moreover protomodular, with all equivalence
relation effective [BB04].
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2.1. Seminormal subobjects
P. Agliano and A. Ursini ([AU92]) introduced the notion of clot for algebraic

varieties.
A subalgebra K of A in C is a clot in A if

t(a1, . . . , am, 0, . . . , 0) = 0 and k1, . . . , kn ∈ K

imply t(a1, . . . , am, k1, . . . , kn) ∈ K
for any a1, . . . , am, k1, . . . , kn in A and any (m+ n)-ary term function t of A.

We will deal with the (weaker) categorical notion of clot in the following
section. Here we are interested in a notion introduced [JU09], which is equivalent
to that of clot in the varietal case. There, as pointed out in [AU92], a clot is
the same as the set (subalgebra) of the elements x ∈ A such that 0Rx for a
given internal reflexive relation (i.e. a semicongruence). Hence we call a map
k : K → A seminormal in A w.r.t. R when k is obtained by a pullback as in
diagram (1), where R is a semicongruence on A (notice that in [JU09] the same
is called clot).

Of course every normal subobject is also seminormal, as every equivalence
relation is reflective. The converse may not hold in general; however it does
hold when the category C is Mal’cev.

In order to introduce the categorical notion of clot, we recall, for the reader’s
convenience the notion of internal action.

Let C be a finitely complete pointed category with coproducts. Then for
any object B in C one can define a functor “ker” from the category of split
epimorphisms (a.k.a. points) over B into C

ker : PtB(C)→ C,
A

α
����
B

β

OO
7→ ker(α).

This has a left adjoint:

B + (−) : C→ PtB(C), X 7→
B +X

[1,0]
����
B

iB

OO
,

and the monad corresponding to this adjunction is denoted by B[(−). In fact
for any object A of C one gets a kernel diagram:

B[A
nB,A // B +A

[1,0] // B.

The normal monomorphism nB,A will be denoted simply n when no confusion
arises. The B[(−)-algebras are called internal B-actions in C (see [BJK05]).
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Let us observe that in the case of groups, the object B[A is the group generated
by the formal conjugates of elements of A by elements of B, i.e. by the triples
of the kind (b, a, b−1) with b ∈ B and a ∈ A.

For any object A of C, one can define a canonical action of A on A itself
given by the composition:

χA : A[A
nA,A // A+A

[1,1] // A .

In the category of groups, the morphism χA is the internal actions associated
to the usual conjugation in A: the realization morphism [1, 1] of above makes
the formal conjugates of A[A computed effectively in A.

Clots
A subobject k : K � A is clot in A, when there exists a morphism ξ :

A[K → K such that the diagram

A[K
ξ //

1[k

��

K

k

��
A[A χA

// A

commutes. As k is a mono, the morphism ξ defined above is unique: namely it
is the internal A[(−)-action that restricts the action in A.

Every seminormal subobject is closed under conjugation. In fact the re-
striction map ξ is the internal action on the kernel corresponding to the split
extension determined by the codomain map of R.

In [JMU09] it is shown that, when C is a pointed regular category with finite
coproducts, also the converse holds .

Ideals
The categorical notion of ideal has been recently introduced in [JMU09],

while the varietal one can be found in [Mag67, Urs72, Hig56]. A subobject
k : K � A is an ideal in A when it is the regular image of a clot along a regular
epimorphism, i.e. if there exists a commutative diagram

L
f ′
// //

l

��

K

k

��
B

f
// // A.

with K clot and f , f ′ regular epimorphisms. It is immediate to observe that,
according to this definition, every clot is an ideal subobject.
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The notion of ideal rests on the possibility of taking images, which would
lead us to set the definition more appropriately in a regular category. Let us
observe that if this is the case, since every clot is the regular image of a kernel,
and since in regular categories regular epimorphisms compose, ideals are regular
images of kernels (as it happens in relevant algebraic examples, see Remark 3.3
in [JMU09]). This has an interesting consequence when C is moreover Mal’cev
(see [CLP91]). Bourn has shown [BB04] that in that case, regular images of
kernels are normal. Result: ideal and normal subobjects coincide.

The discussion above is summarized in the following table:

Kernel Normal Seminormal Clot Ideal

K //

k ��
y

0

��
A

f
// B

K //

k ��
y

R

��
A

��
y

〈1,0〉// A×A
π2��

0 // A

K //

k ��
y

R

��
A

��
y

〈1,0〉// A×A
π2��

0 // A

A[K
ξ //

1[k ��

K
k��

A[A χA

// A

L
f ′
// //

l ��

K
k��

B
f
// // A

K = [0]R, K = [0]R, χA factors l clot,
R equiv. rel. R refl. rel. through k. f, f ′ reg. epi
+3 +3 +3 +3

Mal’cev
ks

Regular
ks

Mal’cev + Regular
ks

3. Semi-abelian, homological and ideal-determined categories.

Semi-abelian categories have been introduced in [JMT02] in order to recap-
ture algebraic properties of groups, rings etc. in a categorical-theoretical setting,
just as abelian categories do for abelian groups, modules etc.

A semi-abelian category is a Barr-exact, Bourn-protomodular category with
zero object and finite coproducts. In [JMT02] the authors compare the defi-
nition as stated above (i.e. given in terms of “new” axioms) with preexisting
investigations on this subject. This lead them to state equivalent versions of the
main definition, given in terms of some so–called “old” axioms, more commonly
used in universal algebra. From there we borrow the following characterization:
a pointed category C with finite limits and colimits is semi-abelian if, and only
if, it satisfies A1, A2 and A3 below:

A1 C has a pullback-stable normal-epi/mono factorization

A2 regular images of kernels are kernels
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A3 (Hoffmann’s axiom) in the diagram below, where l and l′ are regular epi-
morphisms and x′ is a kernel, if Ker(l) ≤ X then x is also a kernel.

X
l′ // //

x

��

X ′

x′

��
Y

l
// // Y ′

Axiom A1 can be easily reformulated as follows:

A1′ C is regular and regular epi’s = normal epi’s.

When axiom A1 holds, axiom A2 means precisely that kernels = ideals, and
in this case all the different notions detailed in Section 2 collapse. Pointed
categories with finite limits and colimits satisfying axioms A1 and A2 are called
ideal-determined [JMU09].

Differently, as shown in Proposition 3.3. of [JMT02], axioms A1 and A3 char-
acterize homological categories among those with finite limits and zero object,
where homological means pointed, regular and protomodular, according to the
definition due to Borceux and Bourn [BB04].

The formulation of the notion of semi-abelian category in terms of the (old)
axioms A1, A2 and A3 led us to the following analysis (in the perspective of the
observation in 2.7 of [JMT02]).

Let us consider the diagram:

�� ��
�� ��normal epimorphisms

i.e. cokernels
oo (i) //

OO

1:1

��

�� ���� ��regular epimorphismsOO

1:1

���� ���� ��kernels oo
(ii) //

� _

(iv)

��

�� ��
�� ��
effective equiv. rel.

i.e. kernel pairs
� _

(v)
���� ���� ��normal subobjects oo

(iii)
//�� ���� ��equiv. relations

If they are considered separately, the two columns describe quite general facts
which hold in categories where referred items do exists: in a category with pull-
backs and coequalizers, regular epimorphisms are in one-to-one correspondence
with kernel pairs, and any kernel pair is an equivalence relation. Similarly,
in a category with kernels and cokernels one gets a one-to-one correspondence
between them, and any kernel is a normal subobject.

Now, axiom A1, in the form of A1′, amounts to C being a regular category,
plus the arrow (i) being an equality. This implies immediately that the unique
map (ii), that makes the upper square commute, is a bijection, and hence the
following valuable fact holds: any effective equivalence relation is completely
determined by its zero-class.
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When also axiom A3 holds, i.e. when the category C is homological, this
fact can be extended to equivalence relations, that are univocally determined
by their zero classes [BB04]. In this case, the bijection (ii) is just the restriction
of a more general bijection (iii).

Finally let us consider the new axiom:

A2′ Kernels = normal subobjects.

This means precisely that the inclusion (iv) is indeed an equality. Hence, when
the category C is homological, this fact collapses the lower square of the dia-
gram, so that axiom A2′ is equivalent to the inclusion (v) being an equality.
This means that the regular category C is moreover exact.

Considerations above give the following characterization:

Corollary 3.1. A category C is semi-abelian if, and only if, axioms A1′, A2′

and A3 hold.

4. Commutators

Several notions of commutators of two coterminal morphisms (i.e. with the
same codomain) have been proposed and studied in different algebraic contexts.

In this section we explore some aspects of commutator theory, by compar-
ing categorically the two different notions of commutator introduced by Higgins
[Hig56] and Huq [Huq68]. Our approach rests on the observation that both
these notions can be formulated from the same notion of formal commutator,
but first we need to recall the original definitions.

4.1. Higgins’ commutator
The notion of commutator according to Higgins, generalizes the case of

groups to those of Ω-groups [Hig56].
We recall the definition of Ω-groups for the reader’s convenience. A category

V of Ω-groups is a variety of groups (in the sense of the universal algebra) such
that:

- the group identity is the only operation of arity 0, i.e. the variety is
pointed;

- all other operations different from group operation (here written addi-
tively), inverse and identity, have arity n, with n ≥ 1.

Given a Ω-group A and two subobjects h : H � A and k : K � A, the
Higgins’ commutator [H,K]H is set of all f(

−→
h ,
−→
k ) with

−→
h ∈ Hn and

−→
k ∈ Km,

f being commutator words, i.e. such that f(
−→
0 ,−→y ) = 0 = f(−→x ,−→0 ).
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Actually it is possible to describe Higgins’ commutator as the image of a
certain subobject of the coproduct H+K through the canonical map [h, k] : H+
K → A. This can be given in an intrinsic way, which will make a generalization
easier.

Let us fix some notation. Let H and K be two given objects of a pointed
finitely complete category C with coproducts. We denote by ΣH,K (or simply
Σ) the canonical arrow

ΣH,K = 〈[1, 0], [01]〉 = [〈1, 0〉, 〈0, 1〉] : H +K → H ×K.

Let us observe that ΣH,K is a regular epimorphism for every pair of objects H
and K in C if, and only if, C is unital [BB04].

4.2. Formal commutator
Let us consider two objects H and K of C. We define the formal commutator

of H and K as the kernel (H � K,σH,K) of ΣH,K . Actually H � K is the
intersection of H[K and K[K, as shown in the diagram below:

H �K //

��
σH,K

%%

H[K

��
K[H // H +K

[0,1] //

[1,0]

��
ΣH,K

%%

KOO

H oo H ×K.

The reason why we call H �K formal commutator is, from one side, that it is
just the Huq’s commutator (that we are going to define later) of H and K in
H +K (see Remark 2).

Our motivation for using the therm formal originates by the fact that,
in the category of groups, the elements of H + K can be represented as re-
duced formal juxtapositions of elements of H and K, say sequences of the
kind (h1, k1, · · · , hn, kn). H � K is generated by all the words of the kind
(x, y, x−1, y−1), with x ∈ H and y ∈ K.

4.3. The realization map
The canonical map

[h, k] : H +K → A

has an interesting interpretation when the object A is a group (actually, similar
arguments hold in any pointed variety of universal algebra). The map [h, k] acts
on sequences of the kind (h1, k1, · · · , hn, kn) by means of the group operation
of A, thus giving the element h1k1 · · ·hnkn computed in A.

Now, if (H,h) and (K, k) are subgroups of a given group A, one can easily
check that the image of H �K through [h, k] is precisely the commutator sub-
group of H and K in A.
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At this point one can easily define the internal version of Higgins’ commu-
tator in an ideal-determined category.

Definition 4.1. Let C be ideal-determined. Then the Higgins’ commutator
[H,K]H of two subobjects h : H � A and k : K � A of A is the regular
image of H �K under the morphism [h, k]σH,K (see diagram below)

H �K // //
_��

δH,K

��

[H,K]H��

��
H +K

[h,k]
// A.

As far as the ground category C has a regular epi/mono factorization system,
as in the ideal-determined case, we can obtain the join of two subobjects (H,h)
and (K, k) of a given object A as the regular image of the canonical map [h, k]:

H ∨K
q

##GGGGGGGGG

H +K

p
99 99ssssssssss

[h,k]
// A.

Then, the following proposition holds.

Proposition 4.2. Let C be ideal-determined. Then the Higgins’ commutator
[H,K]H of two subobjects h : H � A and k : K � A of A is a normal subobject
of H ∨K.

Proof. The inclusion of [H,K]H in A factors through H ∨K by a monomor-
phism, which is normal as a consequence of axiom A2; see diagram below:

H �K // //
_��

δH,K

��

[H,K]H_��

��

##

##GGGGGGGGG

H +K // //

[h,k]

77H ∨K // // A.

4.4. Huq’s commutator
The construction described below was introduced by S. A. Huq [Huq68] in

a purely categorical setting, and further developed by D. Bourn [Bou04]. We
borrow the general definition from the second author, but we will restrict our
attention to the cases when the two coterminal morphisms are monomorphisms.

Definition 4.3. Let C be a finitely complete, unital category, such that regular
and normal epimorphisms coincide, and let us consider two subobjects h : H �
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A and k : K � A. We define the commutator quotient Q = Q(h, k) as the
colimit of the solid arrows in the diagram below, if it exists:

H

〈1,0〉

��������������

��

h

��????????????

H ×K m // Q A
qoooo [H,K]Q

�lrjoo

K

〈0,1〉

__????????????

OO

k

??������������

(2)

The kernel of q is denoted by [H,K]Q and we will refer to it as to the Huq’s
commutator of H and K.

Let us observe that when the map q is an isomorphism, this means precisely
that h and k cooperate, i.e. H and K commute in A. Hence the distance for q
from being an isomorphism expresses exactly the lack of commutativity between
H and K. Since q is a normal epimorphism, this can be measured by its kernel
[H,K]Q.

Remark1. All that follows is indeed well known, but it is worth recalling it, as
it describes the commutator (quotient) as a kind of universal representer of the
algebraic operations.

Let C be the category of groups. The group operation · : H ×K //___ A
is not a morphism in general. Nevertheless one can quotient the group A with
some normal subgroup, such that the quotient map is indeed a morphism. This
is always possible: a trivial answer is to quotient A with itself. A better answer
is given by the commutator of H and K. This is in fact the smaller normal
subgroup such that such that the quotient map is a morphism: with Q =
A/[H,K]Q one has:

H ×K
m

33
· //___ A

q // A/[H,K]Q.

Finally, if H = K = A we get the Heckmann-Hilton argument: a group A is
abelian if, and only if, the group operation A×A→ A is a morphism, and this
happens precisely when the derived subgroup [A,A]Q is trivial.

We observe that the definition of the commutator quotient can be expressed
by means of a canonical pushout, as one can easily see in the next proposition:

Proposition 4.4. Let C be as before, with finite sums. The colimit diagram
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(2) is equivalent to the following pushout

H +K
[h,k] //

Σ

��

A

q

��
H ×K m

// Q
p

. (3)

In this context, the Huq’s commutator [H,K]Q of H and K is obtained as
the kernel of the map q of diagram (3).

Remark2. It is worth considering the very special case when A = H +K, and
h and k are the canonical inclusions. In this situation diagram (3) trivializes,
and the Huq’s commutator [H,K]Q of H and K in H + K coincides with the
formal commutator H �K, whence its name.

4.5. Higgins commutator and Huq commutator compared
The discussion above suggests to develop some considerations. Let C be an

ideal-determined, unital category and let H,K be subobjects of an object A as
above. This is a nice context where Huq’s commutator and Higgins’ commutator
can be compared.

In general these two notions do not coincide, more precisely [H,K]H is a
proper subobject of [H,K]Q, since q restricted to [H,K]H is zero, as the follow-
ing diagram shows:

[H,K]H_��

��

%%

%%KKKKKKKKK

H �K

99ssssssssss

_��

σ

��

// [H,K]Q_��

��

H ∨K

����

&&

&&LLLLLLLLLLL

p

H +K

Σ

����

99 99ssssssssss

[h,k]
//

p

A

q

����

•

&&MMMMMMMMMMMMM

H ×K

88 88qqqqqqqqqqq
// •

Let us observe that in the above diagram, the three vertical sequence of
morphisms are exact and the two bottom “diamonds” are pushouts.

To be more precise, the relationship between Huq’s commutator and Higgins’
commutator is explained by the following proposition.
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Proposition 4.5. Let C be an ideal-determined, unital category, and let H and
K be subobjects of A. Then

[H,K]Q = [H,K]H ,

i.e. the Huq’s commutator is the normalization in A of the Higgins’ commutator.

Proof. Since C is unital, Σ is a regular epi, and so is q. Actually both are
cokernels by axiom A1, and a direct calculation shows that q is precisely the
cokernel of the inclusion [H,K]H � A.

A natural question to ask at this point is under what conditions on C the
comparison is an isomorphism, so that the two notions coincide. As we already
noticed, this is not true in general, and even for the category of groups the two
notions are distinct, if H and K are not normal, as the following example shows.

Example 4.6. Let us consider the simple group A5, given by even permutations
of order five, and the two subgroups H = 〈(12)(34)〉 and K = 〈(12)(45)〉. Then
[H,K]H = 〈(345)〉 6= [H,K]Q = A5 (see [Cig10] for a detailed discussion).

Of course, Huq’s commutator and Higgins’ commutator coincide when the
subobjects are sufficiently big, i.e. when H ∨ K = A (as, for example, in the
case of the formal commutator, where H ∨ K = H + K). In particular, this
happens when one of the subobjects, say H, is the whole A; then the map
[1, k] : A + K → A is a regular epimorphism, and the diagram above happily
collapses. If this is the case, we will drop the H and the Q subscripts, and
write simply [A,K] for the commutator of A and K. Another reason why the
case H = A is special is that in this case Huq’s commutator behaves well w.r.t.
normalization, as shown in the Proposition 4.7 below. In general this is not true,
as one can verify for the simple group A6, with H = 〈(123)〉 and K = 〈(456)〉,
where [H,K]Q = 0, while [H,K]Q = A6 (see [Cig10]).

Proposition 4.7. Let C be an ideal-determined unital category. Then for a
monomorphism k : K � A one has

[A,K] = [A,K],

where (K, k̄) is the normalization of (K, k).

Proof. Let us refer to the two diagrams below:

A � (A[K)

(i)

q //
_��

D

��

A �K

(ii)

p //
_��
d

��

[A,K]_��
c

��
A[(A[K)

(χA[A)ϕ
// A[K χ

// // K,
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A � (A[K)

(iii)

q //
_��

D

��

A �K

(iv)

p //
_��
d

��

[A,K]_��
c

��
A[(A[K)

A[χ
// A[K χ

// // K.

The idea of the proof is to show that the compositions pq and p̄q̄ are the regular
images of the same (to be proved) morphism χ(χA[K)ϕD = χ(A[χ)D. We
shall start by defining all the characters playing in the diagrams.

• The arrows D, d and d are kernels:

A � (A[K) � ,2 D // A[(A[K)
[0,1]n // A[K

A �K � ,2 d // A[K
[0,1]n // K, A �K

� ,2 d // A[K
[0,1]n // K.

• The arrows χ and χ are the regular images of the compositions:

A[K
� ,2 n // A+K

[1,k] // K, A[K
� ,2 n // A+K

[1,k] // K.

• In diagrams (ii) and (iv), up-right compositions are regular epimorphisms
followed by monomorphisms, factorizing left-down compositions.

• The arrow ϕ is given by universal property of kernels, see the diagram
below, where the lower part commutes:

A[(A[K)
ϕ //

_��
n

��

(A[A)[K_��
n

��
A+ (A[K)

[1,0]

��

A+n // A+A+K
[ηA,ηA]+K// (A[A) +K

n[1,0]

��
A ηA

// A[A.

In fact:
[1, 0]([ηA, ηA] +K)(A+ n) =

= [1, 0](ηAK)([1, 1] +K)(A+ n) = ηA[1, 0]([1, 1] +K)(A+ n) =

= ηA[1, 1](A+ [1, 0])(A+ n) = ηA[1, 1]i1[1, 0] = ηA[1, 0].

14



• The arrow q is given again by universal property of kernels, so that diagram
(i) commutes for free:

A � (A[K)_��
D

��

q // A �K_��

d

��
A[(A[K)

ϕ //
_��

n

��

(A[A)[K_��
n

��

χA[K // (A[K)_��
n

��
A+ (A[K)

[0,1]

��

A+n // A+A+K
[ηA,ηA]+K//

[0,1A+K ]

��

(A[A) +K

[0,0,1]

��

χA+K // (A+K)

[0,1]

��
A[K n

// A+K
[0,1]

// K
Id

// K.

In fact:

[1, 0]n(χA[K)ϕ = [1, 0](χA+K)nϕ = [1, 0](χA+K)([ηA, ηA]+K)(A+n)n =

= [0, 0, 1](n+K)([ηA, ηA] +K)(A+n)n = [0, 0, 1]([i2, i2] +K)(A+n)n =

= [0, 0, 1](A+ n)n = [0, 1]n[0, 1]n.

Moreover q is a split epimorphism, and hence regular. This can be shown
by precomposing the upper part of the diagram above with the monomor-
phism A � ηK . The calculation shows that ndq(A � ηK) = nd, which is a
monomorphism. Canceling nd, one gets q(A � ηK) = 1A�K .

• The arrow q̄ is simply A � χ, so that diagram (iii) commutes. Moreover q̄
is a regular epimorphism by Lemma 4.8.

The discussion above has shown that diagrams (i), (ii), (iii) and (iv) commute,
and that their upper sides are regular epimorphisms. Moreover they are fol-
lowed by monomorphisms. Now we are to show that their lower sides coincide:
uniqueness of the factorization will conclude the proof.

Indeed, it is convenient to compose the morphisms that we want to prove
equal, with the normal monomorphism k̄. On one side one has: k̄χA[χ =
[1, k̄](A + χ)n. The other can be represented by the commutativity of the
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diagrams below:

A[(A[K)
(χA[K)ϕ //

n

��

A[K
χ //

n

��

K

k̄

��
A+ (A[K)

A+n //

A+χ

  BBBBBBBBBBBBBBBBBBB A+A+K
[1,1]+k //

A+[1,K]

��

A+K
[1,k] // A

A+A

[1,1]

44iiiiiiiiiiiiiiiiiiiiiii

A+K

A+k̄

OO 1,k̄

99rrrrrrrrrrrrrrrrrrrrrrrrrr

Lemma 4.8. Let the category C be ideal-determined, and let X be an object of
C. Then

• the functors (−)[X and X[(−) preserves the regular epimorphisms.

• the functors (−) �X and X � (−) preserves the regular epimorphisms.

Proof. Let us consider the following two diagrams:

X[A
m // //

_��
n

��
(i)

Z��

��
X +A

X+f //

[1,0]

��
(ii)

X +B

[1,0]

��
X

1
// X

A[X
m′

// //
_��

n

��
(iii)

Z ′��

��
A+X

f+X //

[1,0]

��
(iv)

B +X

[1,0]

��
A

f
// B

The square diagrams (ii) and (iv) are pushout: the first because the arrow f+X
is a regular epimorphism since f and 1X are, the second for the fact that the
outer and the left-most rectangles below are cokernels:

X
iX //

��

A+X
f+X //

[1,0]

��

B +X

[1,0]

��
0 // A

f
// B.

Hence one can take regular images (i) and (iii); since the category is ideal-
determined, they will coincide with the kernels of the pushout:

Z = X[B, m = X[f ; Z ′ = B[X, m′ = X[f.

This completes the proof of the first part of the lemma.
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In order to prove the second part of the lemma, we will point our attention
to the functor (−) �X, as the two are naturally isomorphic.

The argument of the proof is similar to that of the first part. Let us consider
the diagram:

X �A m // //
_��
d

��

Z��

��
X[A

X[f //

n

��
(v)

X[B

n

��
X +A

(vi)

X+f //

[0,1]

��

X +B

[0,1]

��
A

f
// B.

Here, again, (m,Z) is the regular image of (X[f)n, so that it suffices to show
that (v) + (vi) is a pushout in order to get the result. The proof that (iv)
is a pushout is essentially the same we saw for (iv), while for (v) some more
calculations are needed.

Let two converging arrow α and β be given, such that βn = α(X[f). Then,
by universal property of the coproduct X + B we get a unique γ such that
αηB = γnηB and βiX = γ(X + f)iX , where iX : X → X + A is the coproduct
injection.

Claim: β = γ(X + f) and α = γn. The first claim is obtained by precom-
posing with coproduct injections into A+X. The first one, βiX = γ(X + f)iX ,
is given above. For the second one, just follow the chain of equalities:

βia = βnηA = α(X[f)ηA = αηBf = γnηBf = γ(X + f)nηA = γ(X + f)iA,

where the second equality holds by hypothesis, the fourth is given above and
the other by definition. Finally we have to prove the second claim, but it is
a consequence of the first one, which justifies the middle equality in the chain
below:

γ(X[f) = γ(X + f)n = βn = α(X[f).

5. (Yet) another notion of normality

In the category of groups, one can characterize normal subgroups in many
different equivalent ways. The one we present below is surely not one of the
best known. Nevertheless it has interesting implications: it establishes a link
between the notion of normal subgroup with that of commutator. Moreover it
extends unexpectedly to the semi-abelian setting.
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5.1. The case of groups
Let K be a subgroup of a given (multiplicative) group A. Then K is normal

in G if, and only if, [A,K] ≤ K. In fact, if K is normal in A, for every pair
of elements k ∈ K and a ∈ A, ak−1a−1 ∈ K. Hence also kak−1a−1 ∈ K,
i.e. all generators of [A,K] are in K. Conversely, whenever [A,K] ≤ K, for
every pair of elements k ∈ K and a ∈ A one has y = k−1aka−1 ∈ K, so that
ky = aka−1 ∈ K, i.e. K is normal in A.

One implication of the characterization given above holds in a quite general
setting. This is established by the following:

Proposition 5.1. Let C be an ideal-determined unital category. If K is a nor-
mal subobject of A, then [A,K] is a subobject of K.

Proof. Let us refer to the diagram below:

A �K // //
_��

δA,K

��

[A,K]_��
j

��

// // K1t}

k
xxqqqqqqqqqqqq

A+K

(•)

[1,k] // //

Σ
����

[1,0]

�� ��

A

q
����

p

����

A×K // //

πA

����

A
[A,K]

����
A p

// // C.

Firstly we consider the pushout of [1, 0] along [1, k]. Precomposition with the
injection A � A + K forces the other two morphisms of the pushout to be
equal. Let’s call them p : A→ C.

We claim that (C, p) is the cokernel of k. Actually, if we denote by iK
the canonical inclusion of K into A + K, one can compute pk = p[1, k]iK =
p[1, 0]iK = p0 = 0. Moreover, for any other morphism such that fk = 0, one
easily shows that f [1, k] = f [1, 0]. Universality of pushouts gives the morphism
from C stating that C = A/K.

But k is a kernel, so that k = ker(p). Hence, in order to prove that [K,A] ≤
K it suffices to show that pj = 0. This is done by factoring p by q = coker(j),
since the square (•) is a pushout by definition.

In order to get the full characterization of a normal subobject in terms of its
commutator subobject, we shall move to the semi-abelian setting. This is done
in Theorem 5.3 below, but first we need to present the following quite general:

Lemma 5.2. Let C be a unital category. Given a morphism α : A×K → A×N
such that

πAα = πA, α〈1, 0〉 = 〈1, 0〉,

18



then α = 1× r, where r = πNα〈0, 1〉. Furthermore, r is a regular epimorphism,
if α is.

Proof. Since C is unital, α = 1 × r if and only if the equality holds when
precomposing with the canonical injections into the product, that is

(i) α〈1, 0〉 = (1× r)〈1, 0〉,

(ii) α〈0, 1〉 = (1× r)〈0, 1〉.

Since α and 1×r are morphisms to a product, it is sufficient to test the equalities
above when composing with the projections. But

(i) π
A
α〈1, 0〉 = π

A
〈1, 0〉 = 1 = π

A
(1× r)〈1, 0〉,

π
N
α〈1, 0〉 = π

N
〈1, 0〉 = 0 = π

N
(1× r)〈1, 0〉

and
(ii) π

A
α〈0, 1〉 = π

A
〈0, 1〉 = 0 = π

A
(1× r)〈1, 0〉, 4

π
N
α〈1, 0〉 = r = π

N
(1× r)〈1, 0〉.

Consequently α = 1× r. Furthermore, π
N
α = π

N
(1× r) = rπ

K
, hence, when α

is a regular epimorphism, so is r.

Theorem 5.3. Let C be a semi-abelian category, and K � A. Then K is a
normal subobject of A if, and only if, [A,K] is a subobject of K.

Proof. Since any semi-abelian category is both ideal-determined and unital,
the necessary condition is given by the Proposition 5.1. So we have to prove
that, given [A,K] ≤ K ≤ A, K is normal in A.

If p : A → C is the cokernel of k and k : K → A is the kernel of p, then
p =coker(k̄). As we have seen in the Proposition 5.1, p can be factorized as
p = ψq, where q : A → B is the cokernel of j : [A,K] = [A,K] → A and
ψ : B → C is given by the universal property of cokernels. Since K is normal in
A, according to Theorem 2.8.11 of [BB04] we can say that ψ : B = A/[A,K]→
C = A/K is central, that is [B,N ] = 0, where n : N → B denotes the kernel of
ψ. In other words, this means that there exists a cooperator θ : B × N → B,
such that

θ〈0, 1〉 = n and θ〈1, 0〉 = 1B

or, equivalentely, that the diagram

B ×N θ //

πB

��

B

ψ

��
B

ψ
// C

.
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is a pullback diagram. Then, in the following diagram

A×N
q×1 //

πA

��

B ×N θ //

πB

��

B

ψ

��
A q

// B
ψ

// C

.

the outer rectangle is a pullback of p = ψq along ψ. But,

A+K
[1,k] // //

Σ
����

[1,0]

�� ��

A

q
����

p

����

A×K
ϕ // //

πA

����

B

ψ
����

A p
// // C.

since the outer and the top rectangles in the above diagram are pushouts, the
bottom one is a pushout of regular epimorphisms and then a regular pushout,
as it happens in any semi-abelian category. This means that the morphism
α : A×K → A×N given by the universal property of the pullback:

A×K

α
%%KKKKKKKKK

πA

��

ϕ // B

ψ

��

A×N
q×1 //

πA

yyssssssssss
B ×N

θ

;;xxxxxxxxx

πB

��

A
q

**UUUUUUUUUUUUUUUUUUUUUU
p // C

B

ψ

;;wwwwwwwww

.

is a regular epimorphism. Furthermore, θ(q × 1)α = ϕ and απA = πA. In
order to apply Lemma 5.2, we need only to show that α〈1, 0〉 = 〈1, 0〉. Since are
both morphisms to a pullback, it is sufficient to show that the equality holds
when composing with the projections.

(πAα)〈1, 0〉 = πA〈1, 0〉 = 1A = πA〈1, 0〉N

θ(q × 1)α〈1, 0〉 = ϕ〈1, 0〉 = ϕΣiA = q[1, k]iA = q = θ〈1, 0〉q = θ(q × 1)〈1, 0〉

the last equalities holding, by the properties of the cooperator θ. Applying
Lemma 5.2, we get α = 1 × r, with r regular epimorphism, since α is. Hence
(q × 1)α = (q × 1)(1× r) = (q × r) and then the following diagram commutes:
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K
〈0,1〉//

r

��

A×K

q×r
��

ϕ

##FFFFFFFFF

N

��

〈0,1〉// B ×N θ //

πB

��

B

ψ

��
0 // B

ψ
// C

.

Since the two bottom squares are pullbacks, θ〈0, 1〉 = n. Furthermore, ϕ〈0, 1〉 =
ϕΣiK = q[1, k]iK = qk; in conclusion we have the following commutative dia-
gram:

K

k

��

r // // N

n

��
A

q // // B

.

where the horizontal arrows are regular epimorphisms, the rightmost one
is a normal monomorphism and the leftmost one is a monomorphism. But
Ker(q) = [A,K] ≤ K by hypothesis, so we can apply Hoffmann’s axiom and
concude that K is normal in A.
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[JMT02] George Janelidze, László Márki, and Walter Tholen. Semi-abelian
categories. J. Pure Appl. Algebra, 168(2-3):367–386, 2002. Category
theory 1999 (Coimbra).

[JMTU09] G. Janelidze, L. Márki, W. Tholen, and A. Ursini. Ideal-determined
categories. preprint, 2009.

[JMU07] G. Janelidze, L. Márki, and A. Ursini. Ideals and clots in univer-
sal algebra and in semi-abelian categories. J. Algebra, 307:191–208,
2007.

[JMU09] G. Janelidze, L. Márki, and A. Ursini. Ideals and clots in pointed
regular categories. Appl. Categ. Structures, 17(4):345–350, 2009.

[JU09] Z. Janelidze and A. Ursini. Split short five lemma for clots and
subtractive categories. Appl. Categ. Structures, Online First, 2009.

[Mag67] Roberto Magari. Su una classe equazionale di algebre. Ann. Mat.
Pura Appl. (4), 75:277–311, 1967.
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