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ABSTRACT. We study internal profunctors and their normalization under various
conditions on the base category. In the Maltcev case we give an easy characterization
of profunctors. Moreover, when the base category is efficiently regular, we characterize
those profunctors which are fractions of internal functors with respect to weak equiva-
lences.

1. Introduction

In this paper we study internal profunctors in a category C, from diverse points of view.
We start by analyzing their very definition in the case C is Maltcev.
It is well known that the algebraic constraints inherited by the Maltcev condition make
internal categorical constructions often easier to deal with. For instance, internal cate-
gories are groupoids, and their morphisms are just morphisms of the underlying reflective
graphs. Along these lines, internal profunctors, that generalize internal functors are in-
volved in a similar phenomenon: it turns out (Proposition 3.1) that in Maltcev categories
one of the axioms defining internal profunctors can be obtained by the others.

Our interest in studying internal profunctors in this context, comes from an attempt to
describe internally monoidal functors of 2-groups as weak morphisms of internal groupoids.
In the case of groups, the problem has been solved by introducing the notion of butterfly
by B. Noohi in [22] (see also [2] for a stack version). In [1] an internal version of butterflies
has been defined in a semi-abelian context, and it has been proved that they give rise to
the bicategory of fractions of Grpd(C) (the 2-category of internal groupoids and internal
functors) with respect to weak equivalences.
In [1] it is observed also that, through a denormalization process, butterflies in a semi-
abelian category correspond to fractors (Definition 5.2). They give rise to a special kind of
internal profunctors, that have been independently considered by D. Bourn in [11] under
the name of regularly fully faithful profunctors.
Along these lines, by Proposition 4.6 it turns out that in a semi-abelian context, internal
profunctors can be represented by internal crossed profunctors, whose name was adopted
by M. Jibladze in [17] for the case of groups.
Furthermore, the biequivalence

XProf(C) ' Prof(C)
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between internal crossed profunctors and profunctors restricts to a biequivalence

Bfly(C) ' Fract(C)

between butterflies and fractors.

Having these facts in mind, a natural question arise: using fractors instead of butterflies,
is it possible to describe the bicategory of fractions of Grpd(C) with respect to weak
equivalences even if C is no longer semi-abelian?
In this paper we give a positive answer to this question, by proving that fractors are the
bicategory of fractions of Grpd(C) provided that C is efficiently regular (see [11]), and a
fortiori when it is Barr-exact (Theorem 6.2).
We can resume the situation with the following picture, where the solid part is what is
already known and the dashed part is what we prove in this paper

Grpd(C)
'

F //______ Fract(C)
'

� � // Prof(C)
'�

�
�

XMod(C) F // Bfly(C) � � //______ XProf(C)

The three columns are biequivalences (the first one, between internal groupoids and in-
ternal crossed modules, is due to G. Janelidze, see [15]) and require C to be semi-abelian;
the homomorphisms called F are bicategories of fractions, the lower one requires C to be
semi-abelian and the upper one holds when C is just efficiently regular. As an intermedi-
ate step in order to establish the universal property of Fract(C), in Proposition 5.7, we
characterize various kinds of representable profunctors in terms of fractors.

2. Preliminaries on profunctors

Profunctors, introduced by J. Bénabou in [4] under the name of distributeurs (see [5] for a
more recent account), are a fruitful generalization to categories of the notion of relation,
they provide an interesting formal approach to category theory (see [7]) and, together
with functors, constitute a fundamental example of pseudo double category (see [14].
A profunctor H # G is a functor H × Gop → Set. Equivalently, a profunctor can be
described in terms of a discrete fibration over H and a discrete cofibration over G. The
latter definition is internal (see [18]) and we recall it here in details. We assume the reader
familiar with internal categories (and groupoids), internal functors and internal natural
transformations in a finitely complete category C (see [8], Chapter 8, for an introduction).

2.1 An internal functor f = (f0, f1) : E→ H in C

E1

c //

d
//______

f1
��

E0uoo

f0
��

H1

c //

d
//______ H0uoo
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is a discrete fibration if the square

c · f1 = f0 · c

is a pullback (which implies that also the square f1 ·u = u ·f0 is a pullback). When this is
the case, the domain map d : E1 → E0 is a right action of H on E0, that is, the diagrams

E1 ×f0·d,c H1

d×1
��

E0 ×f0,c H1 ×d,c H1
1×m // E0 ×f0,c H1

E0 ×f0,c H1 = E1
d

// E0 E1d
oo

E0
u //

1   BBBBBBBB E1

d
��
E0

commute (where m is the composition in H).
Conversely, given an internal category H and a split pullback

E1

c //

f1
��

E0
u

oo

f0
��

H1

c // H0
u

oo

if there exists an arrow d : E1 → E0 making commutative the two previous diagrams, then
f = (f0, f1) : E → H is a discrete fibration between internal categories, the composition
in E being defined in the obvious way via the universal property of E1.
The same relation holds between a discrete cofibration, that is, an internal functor f : E→
H for which the square

d · f1 = f0 · d

is a pullback, and a left action of H on E0.

Definition 2.2 Let C be a finitely complete category. A profunctor E : H # G is given
by a discrete fibration on H and a discrete cofibration on G as in the diagram

EH

δ

�����������

dH ��?
?

?
?

? cH

��????????? GE
dG

�����������

cG
���

�
�

�
� γ

��?????????

H1

d
��?

?
?

?
?

c

��????????? E

δ
�����������

uG����

??����uH????

__????

γ
��????????? G1

d

�����������

c
���

�
�

�
�

H0

u????

__????

G0

u����

??����

(1)

These data must satisfy two conditions:

C1 The two actions on E are compatible:

γ · dH = γ · cH δ · dG = δ · cG
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C2 The two actions on E commute:

dH · nH = cG · nG

where the arrows nH and nG are defined as follows: consider the pullback

GEH cH //

dG
��

GE

dG
��

EH
cH

// E

when C1 holds, one can define

- nH : GEH → EH as the unique arrow such that δ · nH = δ · dG and cH · nH = cG · cH

- nG : GEH → GE as the unique arrow such that γ · nG = γ · cH and dG · nG = dH · dG

2.3 In the definition of profunctor, if we look at the elements of E as virtual arrows,
we can consider a profunctor as a kind of generalized category, where it is possible to
compose the virtual arrow e on the right with (composable) arrows of H and on the left
with (composable) arrows of G:

d(h)
h ++

δ(e) e //___ γ(e)
g
33 c(g)

Condition C1 says that the virtual codomain of the composition e ◦ h is exactly γ(e) and
the virtual domain of the composition g • e is δ(e), so that we can compare g • (e◦h) with
(g • e) ◦ h:

d(h) h
++

e◦h

##v
n g _ W P

H

δ(e)

g•e

;;H
P W _ g n

v

e //___ γ(e) g 33 c(g)

According to this set-theoretical description, condition C2 simply states that the two
compositions are equal, so that one can consider C2 as a sort of mixed associativity
axiom. The following example further explains this point of view.

Example 2.4 Any internal category H can be seen as a profunctor, by means of Yoneda:

H1
H

d

������������

dH
��?

?
?

?
?

cH

��??????????
HH1

dH

������������

cH
���

�
�

�
�

c

��??????????

H1

d
��?

?
?

?
?

c

��?????????? H1

d
������������

c

��?????????? H1

d

������������

c

���
�

�
�

�

H0 H0
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where the two actions involved are the compositions on the right and on the left in H. In
this case, condition C1 defines the partial multiplicative structure of the given category,
while C2 amounts to the associativity of the composition.

2.5 Given two profunctors with the same domain and codomain, it is natural to define
a notion of morphism between them.
For E : H # G and E ′ : H # G with

H0 E
δoo γ // G0 and H0 E ′

δ′oo γ′ // G0

respectively, a morphism t : E → E ′ is just a map t in C commuting with the δ’s and the
γ’s

δ′ · t = δ γ′ · t = γ

and with the actions

t · dH = d′H · 〈δ, t · cH〉 t · cG = c′G · 〈t · dG, γ〉

It is not hard to show that this defines a (hom-)category Prof(C)(H,G).

Remark 2.6 It is possible to associate to any profunctor E : H # G a span

H Ewoo v // G

of categories and functors in the following way (see Section 1 in [11] for more details):
consider the pullback

E1
πH //

πG
��

GE

cG

��
EH

dH
// E

the span is given by

H1

d
��
c

��

E1
δ·πGoo γ·πH //

dG·πH
��
cH·πG
��

G1

d
��
c

��
H0 E

δ
oo

γ
// G0

Remark 2.7 Since in the next section we will deal with profunctors in a Maltcev cate-
gory, let us recall that, if we restrict our attention to internal groupoids, then

1. discrete fibrations coincide with discrete cofibrations;

2. in Definition 2.2, the squares

cH ·dG = dG ·cH , dH ·nH = cG ·nG , dH ·πG = cG ·πH , cH ·nH = cG ·cH , dG ·nG = dH ·dG
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are isomorphic pullbacks;

3. it is possible to flip a profunctor exchanging the role of domain and codomain. We
denote this operation ()op :

E : H # G 7→ Eop : G # H

2.8 Finally, let us recall that, when the base category C is Barr-exact (see [11]), pro-
functors compose

E : H # G , E ′ : G # K 7→ E ′ · E : H # K

(composition of profunctors is modelled on the tensor product of bimodules, see [4]) and
it is not difficult to see that internal categories, internal profunctors and their morphisms
form a bicategory Prof(C), the identity profunctor being the one described in Example
2.4. The interested reader may look at [18] for a full treatment or at [11] for a detailed
account.

3. Profunctors in the Maltcev context

It is clear that condition C1 of the definition of profunctors is necessary in order to merely
state condition C2. It is natural to ask if it is also sufficient. The answer in general is
negative. Actually two compatible actions usually need not to commute, so that they do
not give rise to a profunctor.
An easy example is given by a right action ◦ : E × G → E of a group G on a set E. By
taking as a left action g • e = e ◦ g−1, we do have two compatible actions:

E ×G
πG

�����������

◦
��?

?
?

?
?

πE

��????????? G× E
πE

�����������

•
���

�
�

�
�

πG

��?????????

G

d
��?

?
?

?
?

c

��????????? E

δ
�����������

γ
��????????? G

d

�����������

c
���

�
�

�
�

1 1

It is an easy exercise to show that these actions do not commute in general (they commute
when the group G is abelian).

Now suppose that the category C is Maltcev, i.e., a finitely complete category in which any
reflexive internal relation is an equivalence relation [13]. An important feature of Maltcev
categories is that every internal category is a groupoid. Actually more is true. As shown
by A. Carboni, M.C. Pedicchio and N. Pirovano in [13], in order to have an internal
category, it is not necessary to impose the associativity axiom: this comes for free from
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the multiplicative structure. Furthermore, if a reflexive graph admits a multiplicative
structure, it is unique, so that internal functors are just morphisms of the underlying
reflexive graphs.
Example 2.4 shows that, when an internal category H is seen as a profunctor, condition
C2 corresponds to the associativity of the composition, and associativity comes for free
in the Maltcev context. This suggests the following result.

Proposition 3.1 Let C be a Maltcev category. Condition C2 in the definition of pro-
functor (Definition 2.2) follows from the other conditions.

Proof. Consider the pullback involved in condition C2

GEH cH //

dG
��

GE

dG
��

EH
cH

// E

The sections uH of cH and uG of dG give rise to sections uH of cH and uG of dG such that

uG · cH = cH · uG ; , uH · dG = dG · uH , uG · uH = uH · uG
Therefore, the diagram

EH

cH
��

GEHdGoo cH //

cH·dG
��

GE

dG
��

E

uH

OO

E

uG·uH

OO

E

uG

OO

is a product in the fibre PtE(C) of the fibration of points. Since C is Maltcev, PtE(C) is
unital, so that the injections

EH uG // GEH GE
uHoo

are jointly (strongly) epimorphic (see [9], Chapter 2). Now we check condition C2 pre-
composing with uG and uH. We examine the calculation when precomposing with uH, the
other one being similar. We need three steps:
First step: nG · uH = 1. For this, just compose with the pullback projections

G1
GE

γoo dG // E

Second step: nH · uH = uH · cG. For this, compose with the pullback projections

H1 EHδoo cH // E

and use condition C1 when composing with δ.
Third step: using the first and the second step, we have

cG · nG · uH = cG = dH · uH · cG = dH · nH · uH
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4. Crossed profunctors

A semi-abelian category is a Barr-exact, pointed and protomodular category with binary
coproducts, see [16] or [9]. Semi-abelian categories satisfy the Maltcev condition. More-
over, we assume that the condition “Huq is Smith” holds, see [21], and call such a category
H-S semi-abelian.

4.1 In a H-S semi-abelian category, an internal crossed module H is given by two arrows

H0[H
ξH // H

∂H // H0

making commutative the diagram

H[H

∂H[1
��

χ
H // H

1

��
H0[H

1[∂H
��

ξH // H

∂H
��

H0[H0 χ
H0

// H0

where χ
X

is the canonical conjugation action on an object X, and X[Y is the object part
of the kernel of [1, 0] : X + Y → X (see [20] for a detailed account). A morphism H→ G
of crossed modules is a pair of arrows H → G and H0 → G0 commuting with the ∂’s and
the ξ’s.
In [15], G. Janelidze proved that the category Grpd(C) of internal groupoids and internal
functors is equivalent to the category XMod(C) of internal crossed modules (in fact, this
is a biequivalence of bicategories, see Corollary 2.12 in [1]). The process of associating a
crossed module to a groupoid is called normalization: given a groupoid H

H1

c //

d
// H0uoo

we get an action ξ : H0[H → H by the following diagram, where the rows are kernels,

H0[H

ξH
��

// H0 +H

[u,h]

��

[1,0] // H0

1
��

H
h

// H1 d
// H0

The crossed module associated to H is then

H0[H
ξH // H

∂H=c·h // H0

A notational convention: we will often use the same notation for groupoids and their
associated crossed modules, so that H stays for (∂H, ξH) and for the associated groupoid
(H1, H0).
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4.2 We apply now the normalization process to the four groupoids involved in the defi-
nition of profunctor: using the notation of Definition 2.2, we first get

H
h // EH

δ

�����������

dH ��?
?

?
?

?
cH

��?????????
GE

dG

�����������

cG
���

�
�

�
�

γ

��????????? G
goo

H
h // H1

d
��?

?
?

?
?

c

��????????? E

δ
�����������

γ
��????????? G1

d

�����������

c
���

�
�

�
�

G
goo

H0 G0

(recall that d and dH have same kernel because dH is the pullback of d along δ, and the
same holds for d and dG), and then we get a commutative diagram

H
κ

��??????

∂H

��

G

∂G

��

ι

��������

E

δ��������
γ ��??????

H0 G0

(2)

where κ = cH · h and ι = cG · g.
Lemma 4.3 Let C be a H-S semi-abelian category. A profunctor E : H # G yields
the commutative diagram (2), where ∂H and ∂G are crossed modules and the following
conditions are fulfilled:

i. γ · κ = 0,

ii. δ · ι = 0

iii. The action of the crossed module κ : H → E is compatible with the action of the
crossed module ∂H : H → H0, that is, the following diagram commutes

E[H //

δ[1 $$IIIIIIIII H

H0[H
ξH

<<xxxxxxxx

iv. The action of the crossed module ι : G → E is compatible with the action of the
crossed module ∂G : G→ G0, that is, the following diagram commutes

E[G //

γ[1 $$HHHHHHHHH G

G0[G
ξG

<<yyyyyyyy

Conversely, given such a diagram satisfying conditions (i) to (iv) above, one recovers a
profunctor H # G.
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Proof. The first sentence is proved just by simple computations. Conversely, it is easy to
see that the commutativity of the left triangle in diagram (2), plus condition (iii), makes
the pair (1H , δ)

H

κ

��

1H // H

∂H
��

E
δ
// H0

a discrete fibration of crossed modules, and therefore a discrete fibration of the associated
groupoids (see [1], Remark 3.2), and similarly for the right triangle and condition (iv).
Moreover, conditions (i) and (ii) imply condition C1 of Definition 2.2 on the associated
groupoids, thanks to the protomodularity of C. Finally, since C is Maltcev, condition C2
of Definition 2.2 follows from Proposition 3.1.

The previous result justifies the following definition, which extends to the semi-abelian
context a notion introduced by M. Jibladze in [17] in the case of groups.

Definition 4.4 Let C be a H-S semi-abelian category, and consider two internal crossed
modules H and G. A crossed profunctor E : H # G is a commutative diagram of the form

H
κ

��??????

∂H

��

G

∂G

��

ι

��������

E

δ��������
γ ��??????

H0 G0

such that

i. γ · κ = 0,

ii. δ · ι = 0

iii. The action of E on H induced by that of H0 on H via δ makes κ : H → E a
(pre)crossed module

iv. The action of E on G induced by that of G0 on G via γ makes ι : g → E a
(pre)crossed module.

A morphism of crossed profunctors E,E ′ : H # G is an arrow f : E → E ′ commuting
with the κ’s, the ι’s, the δ’s and the γ’s.

4.5 In order to obtain a bicategory XProf(C) of crossed modules and crossed profunc-
tors, we describe now the composition of crossed profunctors.
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Let us consider two crossed profunctors E : H # G and E ′ : G # K. The composite
E ′ · E : H # K is defined by the following construction:

Q

γ′s

		

δr

��

E ×γ,δ′ E ′
q

OO

r

������������������

s

��8888888888888888

H

〈κ,0〉
55llllllllllllllll

∂

��

κ

  BBBBBBBB G

〈ι,κ′〉

OO

ι
yyttttttttttt

κ′ %%KKKKKKKKKKK

∂

��

K

〈0,ι′〉
iiSSSSSSSSSSSSSSSS

ι′

}}{{{{{{{{

∂

��

E

δ~~}}}}}}}}

γ
%%JJJJJJJJJJJ E ′

δ′yyttttttttttt

γ′ !!BBBBBBBB

H0 G0 K0

The central object Q of the composite E ′ · E is obtained by first pulling-back (E, γ)
and (E ′, δ′), then taking the quotient over the normal subobject (G, 〈ι, κ′〉). The four
morphisms that give the crossed profunctor E ′ ·E are q · 〈κ, 0〉, q · 〈0, ι′〉, and δr, γ′s. The
first two are obtained by the universal property of the pullback E×γ,δ′ E ′, the last two by
the universal property of the cokernel Q. Calculations show that, even if not associative
on the nose, this composition is coherently weakly associative.
For each crossed module H, its identity crossed profunctor is precisely the normalization
of the identity profunctor of the groupoid corresponding to H (see Example 2.4).
It is not difficult to show that the composition just defined extends functorially to 2-cells,
and that these data form a bicategory XProf(C).

Now we can complete the comparison between profunctors and crossed profunctors, started
in Lemma 4.3, making precise the idea that crossed profunctors are the normalized version
of profunctors.

Proposition 4.6 Let C be a H-S semi-abelian category. The normalization process ex-
tends to a biequivalence of bicategories

Prof(C) ' XProf(C)

Proof. The normalization process clearly determines a homomorphism of bicategories. In
fact it is straightforward (even if cumbersome) to show that the composition of the nor-
malization is (isomorphic to) the normalization of the composition. Moreover, the similar
property concerning the identities follows from the very definition. Coherence is granted
by the universal properties involved. This homomorphism clearly yields equivalences on
the hom-categories

Prof(C)(H,G)→ XProf(C)(H,G).

Finally, the homomorphism is not just biessentially surjective, but essentially surjective.
This is a consequence of the equivalence between the category of groupoids and that of
crossed modules.
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5. Butterflies and fractors

Among crossed profunctors, of special interest are butterflies, introduced in [22] in the
case of groups and extended to the semi-abelian context in [1].

Definition 5.1 Let H and G be crossed modules in a H-S semi-abelian category C. A
crossed profunctor E : H # G

H
κ

��??????

∂H

��

G

∂G

��

ι

��������

E

δ��������
γ ��??????

H0 G0

is a butterfly if the NE-SW complex is an extension: δ is the cokernel of ι and ι is the
kernel of δ.

Butterflies form a locally groupoidal sub-bicategory Bfly(C) of XProf(C) (see Section
3.7 in [1] for the proof that butterflies are closed in XProf(C) under composition).

A natural question arises. What happens if we “denormalize” butterflies, i.e. we go back
to groupoids via the equivalence between Grpd(C) and XMod(C)?
We obtain the following diagram:

EH

δ

������������

dH
��?

?
?

?
?

?
cH

��??????????? R[δ]

dG

������������

cG

���
�

�
�

�
γ

��??????????

H1

d
��?

?
?

?
?

c

��?????????? E

δ
���������������

γ

��??????????? G1

d

������������

c

���
�

�
�

�

H0 G0

(3)

where the NE-SW fork is an exact fork. This yields a new notion. More precisely:

Definition 5.2 A fractor in a category C with finite limits is a pair of left-right compat-
ible actions of groupoids over an object E (as in diagram (3) above) where the NE-SW
fork is an exact fork, i.e. δ is a regular epimorphism and (dG, cG) is its kernel pair.

Observe that it is not required to be a profunctor. Actually it is so: the commutativity of
the two actions comes for free even if the base category is not Maltcev (see [1], Remark
3.5). The name is justified by the fact that fractors form the bicategory of fractions of
the 2-category of internal groupoids with respect to weak equivalences (see Theorem 6.2).
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Remark 5.3 In a finitely complete C, fractors give rise to those profunctors between
groupoids independently considered by D. Bourn in [11] as the ones whose canonical span
representation has a fully faithful, surjective on objects, left leg. In fact we will identify
fractors with these, when no confusion arises.

When C is efficiently regular, fractors form a locally groupoidal bicategory Fract(C). This
forms a sub-bicategory of Prof(C) when profunctor composition can be defined, i.e. for
instance when C is Barr-exact (see [11]).

Proposition 5.4 Let C be a H-S semi-abelian category. The biequivalence

Prof(C) ' XProf(C)

of Proposition 4.6 restricts to a biequivalence

Fract(C) ' Bfly(C)

Proof. See Section 3.3 in [1].

From Proposition 5.4 and [1], Theorem 5.8, we have that, in the semi-abelian context,
Fract(C) is the bicategory of fractions of Grpd(C) with respect to weak equivalences.
In order to prove that this result holds in the more general context of efficiently regular
categories, we characterize now various kinds of representable profunctors in terms of
fractors.

5.5 Recall from [18] that any internal functor f : H → G between internal categories
gives rise to a profunctor f• : H # G as follows: given an internal functor

H1

c //

d
//

f1
��

H0

f0
��

G1

c //

d
// G0

consider the pullback

E
f0 //

δ
��

G1

d
��

H0 f0
// G0

and define the profunctor f• by

EH

δ

�����������

dH ��?
?

?
?

?
cH

��?????????
GE

dG

�����������

cG
���

�
�

�
�

γ

��?????????

H1

d
��?

?
?

?
?

c

��????????? E

δ
�����������

c·f0 ��????????? G1

d

�����������

c
���

�
�

�
�

H0 G0
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Moreover f• has a right adjoint f • : G # H in the bicategory Prof(C). If G and H are
groupoids, f • is nothing but (f•)

op. Recall also that, if E : H # G is a profunctor and

H Ewoo v // G

is its associated span as in 2.6, then E ' v• ·w•. Moreover, if E : H # G is a fractor, it is
proved in [11] that w : E→ H is a weak equivalence in the sense of [12], that is, a functor
which is internally fully faithful and essentially surjective on objects.

A profunctor E : H # G is representable if it is isomorphic to f• for some internal functor
f : H→ G.

Lemma 5.6 Let C be a Barr-exact category and E : H # G a profunctor between internal
groupoids. If E is a fractor, then it has a right adjoint given by Eop.

Proof. Starting from a fractor E : H # G, we know that in its canonical representation
as a span of functors

H Ewoo v // G
the left leg w is a weak equivalence. Moreover, as for any profunctor, E ' v• ·w•. In this
setting, one can easily recover the counit and the unit of the adjunction E a Eop

ε : E · Eop ' v• · w• · (v• · w•)op ' v• · w• · (w•)op · (v•)op ' v• · w• · w• · v• ' v• · v• ⇒ 1

η : 1 ' w• · w• ⇒ w• · v• · v• · w• ' Eop · E

from those of the adjunction v• a v• and of the adjoint equivalence (w•, w
•).

Proposition 5.7 Let C be finitely complete and E : H # G a profunctor between internal
groupoids:

EH

δ

�����������

dH ��?????????
cH

��?????????
GE

dG

�����������

cG
�����������

γ

��?????????

H1

d
��?????????

c

��????????? E

δ
�����������

γ
��????????? G1

d

�����������

c
�����������

H0 G0

(i) E is representable if and only if it is a split fractor, that is a fractor with its left leg
δ a split epimorphism.

(ii) E is representable by an essentially surjective functor if and only if it is a split
fractor with its right leg γ a regular epimorphism.

(iii) E is representable by a fully faithful functor if and only if it is a split fractor with
(EH, dH, cH) the kernel pair of γ.
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(iv) E is representable by a weak equivalence if and only if it is a split fractor with Eop

still a fractor.

(v) In the case C is Barr-exact, a profunctor E : H # G is representable by an equiva-
lence if and only if it is a split fractor with Eop still a split fractor.

Proof. (i): Given a functor f , the left leg δ of f• clearly splits, as it is the pullback along
f0 of the split epimorphism d : G1 → G0. Conversely, let us consider a split fractor E :

EH

dH ��?????????

δ������������� cH

��????????? R[δ]
dG

�����������

cG
����������� γ

��????????

H1

d
��?????????

c

��?????????

s

??���������

E φ

PP

δ�������������

γ
��????????? G1

d

�����������

c
�����������

H0

s

??���������

G0

where the section s is the pullback of a section s, and φ is the only arrow such that
dG · φ = s · δ and cG · φ = 1E. Moreover, in the diagram

E

δ
��

φ // R[δ]

dG
��

cG // E

δ
��

H0 s
// E

δ
// H0

the square on the left is a pullback, since the whole and the one on the right are.
One can easily prove that the assignments f0 = γ · s and f1 = γ · φ · dH · s produce an
internal functor f = (f0, f1) with f• = E.

Proof. (ii): Since we are working in the context of (internal) groupoids, being essentially
surjective for f (i.e. f0 surjective up to isomorphisms) amounts to c · f 0 being a regular
epimorphism (i.e. f0 surjective up to morphisms!), but in the profunctorial representation
f• of f this last morphism is nothing but γ.

Before we prove the other statements of Proposition 5.7, let us recall that any internal
functor f : H→ G can be factored into a bijective on objects functor followed by a fully
faithful one. The corresponding construction is well-known (e.g. [11]):

H1

ω
''NNNNNNNNNNNNN f1

//

〈d,c〉

��

G1

〈d,c〉

��

Φ

φ1

88ppppppppppppp

φ0
��

H0 ×H0 1
// H0 ×H0 f0×f0

// G0 ×G0
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The pullback (Φ, φ0, φ1) of 〈d, c〉 along f0×f0 gives rise to an internal category Φ with the
same objects as H. Then the pairs (ω, 1H0) and (φ1, f0) yield the desired factorization.
Observe that f itself is fully faithful precisely when w is an isomorphism, i.e., the outer
rectangle above is a pullback.

Proof. (iii): Let us consider the following diagram, where E is the pullback of f0 and d
as in 5.5,

EH
cH

//
dH //

τ

  @
@

@
@

δ

��

E

δ

��

f0 // G1

d

��

c // G0

R

m

��

φ

//
γ1

??~~~~~~~~

γ0
??~~~~~~~~

R[c]

m

��

c1

=={{{{{{{{

c0
=={{{{{{{{

H1
c

//
d //

ω
  AAAAAAAA H0 f0

// G0

Φ
φ1

//
c

>>~~~~~~~~

d
>>~~~~~~~~

G1

c

==zzzzzzzz

d
==zzzzzzzz

The functor (δ, δ) is the discrete fibration corresponding to the left leg of f•. Moreover
the arrows ω and φ1 are precisely those given by the factorization of f as described above.
Since G is a groupoid, given a kernel pair (R[c], c0, c1), the object R[c] is also the pullback
of c along d, with projections m and c1. Now let us consider the pullback R of m along
φ1. We get the arrows γ0 = 〈c0 · φ, d · m〉 and γ1 = 〈c1 · φ, c · m〉 onto the pullback E.
Moreover, by pullback composition, we have the morphism τ = 〈ω · δ, f · cH〉 : EH → R
that satisfies γ0 · τ = dH and γ1 · τ = cH.
Now it is not difficult to show that (R, γ0, γ1) is the kernel pair of γ = c · f 0. Finally f is
fully faithful, i.e. ω is an isomorphism, if and only if τ is, whence the result.

Proof. (iv): Since an internal weak equivalence f : H → G is a functor which is fully
faithful and essentially surjective, the result is achieved by (ii) and (iii).

Proof. (v): Let E = f• with f : H → G an equivalence with quasi-inverse g : G → H.
Then g is (in particular) right adjoint to f and then g• is right adjoint to f•. By Lemma
5.6 we also have E a Eop and then Eop ' g•. Since g is an equivalence, by point (iv) in
Proposition 5.7 the profunctor Eop is a split fractor.
Conversely, assume that both E and Eop are split fractors. By point (iv) in Proposition
5.7, E ' f• and Eop ' g• with f : H → G and g : G → H two weak equivalences. Since
E a Eop and FH,G is full and faithful, we get f a g. Since f and g are fully faithful, the
condition f a g immediately implies that f is an equivalence with quasi-inverse g.

The representation of functors inside fractors extends to an embedding

FH,G : Grpd(C)(H,G) ↪→ Fract(C)(H,G).

The discussion above describes this embedding on morphisms, while its definition on 2-
cells is just the straightforward internalization of the following set-theoretical construction:
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given a natural transformation α : (f1, f0) +3 (g1, g0) , the required isomorphism Ef → Eg
is the map

α̃ : (h0, f(h0)
g1 // g0 ) 7→ (h0, g(h0)

α−1
h0 // f(h0)

g1 // g0 )

6. Fractors are fractions

As a last preparatory step to prove that fractors are the bicategory of fractions, let us
recall Proposition 2.5 from [11] (where a fractor E such that Eop is still a fractor is called
a regularly fully faithful profunctor).

Lemma 6.1 Let C be an efficiently regular category and E : H # G a fractor between
internal groupoids. If Eop : G # H is still a fractor, then E is an equivalence in Fract(C),
a quasi-inverse being necessarily given by Eop.

In [23], D. Pronk has defined the bicategory of fractions of a bicategory B with respect
to a class Σ of 1-cells. This is a homomorphism of bicategories

PΣ : B → B[Σ−1]

universal among all homomorphisms F : B → A such that F(S) is an equivalence for all
S ∈ Σ.

Theorem 6.2 Let C be an efficiently regular category. The homomorphism of bicategories

F : Grpd(C)→ Fract(C) (f : H→ G) 7→ (f• : H # G)

is the bicategory of fractions of Grpd(C) with respect to the class Σ of weak equivalences.

Proof. Since Σ admits a right calculus of fractions (see [25], Proposition 4.5), we can use
Proposition 24 from [23] to prove that F is the bicategory of fractions.
- F(S) is an equivalence if S is a weak equivalence: this follows from point (iv) in Propo-
sition 5.7 and Lemma 6.1.
- F is surjective on objects up to equivalence: obvious because F is the identity map on
objects.
- F is full and faithful on 2-cells: we already noticed that FH,G is a full and faithful
functor.
- For every fractor E : H # G there exist internal functors w : E → H and v : E → G
such that w ∈ Σ and E · F(w) ' F(v) : for this, consider once again the span of internal
functors associated to the profunctor E

H Ewoo v // G

We know that w ∈ Σ (because E is a fractor) and that E ' v• · w• (see 5.5). Therefore:

E · w• ' v• · w• · w• ' v•
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Remark 6.3 The year 2011 witnessed a debate on profunctors and anafunctors.
The notion of anafunctor has been introduced by M. Makkai in [19] in order to describe
some weak morphisms of categories. Its internalization is due to T. Bartels [3]. Our
interest in anafunctors is related to the fact that they constitute a bicategorical localization
of internal categories with respect to internal weak equivalences, in the sense of [23], as
proved by D. Roberts in [24].
We can compare the bicategory Ana(C) of anafunctors (with respect to the regular-epi
Grothendieck pretopology) with Fract(C), for C a Barr-exact Maltcev category. By the
universal property of the bicategory of fractions of the 2-category Cat(C), with respect
to the class Σ of internal weak equivalences, one has the following chain of biequivalences

Fract(C) ' Cat(C)[Σ−1] ' Ana(C).

This establishes an internal version of J. Benabou’s statement [6], namely that anafunctors
precisely correspond to locally representable profunctors, i.e. in our terminology, fractors.
This result is still valid when we drop the Maltcev hypothesis, provided we restrict our
concern to internal groupoids instead of internal categories.

To end, let us observe that if in C the axiom of choice holds (that is, any regular epi-
morphism splits) then weak equivalences in Grpd(C) coincide with equivalences, and
fractors coincide with representable profunctors (cf. Proposition 5.7), which are therefore
the bicategory of fractions of Grpd(C) with respect to weak equivalences.
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